Heme Oxygenase-1-Targeted Cancer Therapy: At the Crossroads of Cytoprotection and Tumour Progression

Authors

DOI:

https://doi.org/10.20883/medical.e1358

Keywords:

heme oxygenase-1, cancer progression, oxidative stress, ferroptosis, tumour angiogenesis, chemoresistance

Abstract

Introduction. HO-1 is a stress-responsive enzyme involved in cellular protection against oxidative damage, inflammation, and tissue injury. However, in cancer, its cytoprotective functions may paradoxically support cancer progression, immune evasion, and therapy resistance.

Material and methods. This review explores current findings on HO-1’s dual role in cancer biology. We analysed studies addressing its function in redox regulation, angiogenesis, immune modulation, iron metabolism, and its impact on treatment response. Particular focus was placed on HO-1’s downstream metabolites (CO, biliverdin/bilirubin, and iron) and their influence on tumour development.

Results. HO-1 contributes to cellular defence by limiting reactive oxygen species and supporting DNA repair. However, its overexpression in tumours promotes survival signalling, angiogenesis (via VEGF and HIF-1α), metabolic reprogramming, and resistance to apoptosis and chemotherapy. Additionally, HO-1 regulates ferroptosis by modulating intracellular iron and lipid peroxidation. The Nrf2/HO-1 axis is frequently upregulated in tumours, enhancing antioxidant capacity and undermining therapeutic efficacy. Preclinical studies show that HO-1 inhibition—via gene silencing, small molecules, or combination with chemotherapy and photodynamic therapy—can restore treatment sensitivity and suppress tumour growth.

Conclusions. HO-1 plays a context-dependent, dual role in cancer as both a protector and promoter. Therapeutic targeting of HO-1 holds promise but requires precision to avoid disrupting its protective roles in normal tissues. Further research should aim to develop selective, tumour-specific HO-1 inhibitors and integrate them into combination treatment strategies.

Downloads

Download data is not yet available.

References

Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006 Apr;86(2):583–650. https://doi.org/10.1152/physrev.00011.2005.

Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol. 2024 Oct;15:1433113. https://doi.org/10.3389/fimmu.2024.1433113.

Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010 Feb;50(1):323–54. https://doi.org/10.1146/annurev.pharmtox.010909.105600.

Luu Hoang KN, Anstee JE, Arnold JN. The diverse roles of heme oxygenase-1 in tumor progression. Front Immunol. 2021 Mar;12:658315. https://doi.org/10.3389/fimmu.2021.658315.

Chiang SK, Chen SE, Chang LC. A Dual role of heme oxygenase-1 in cancer cells. Int J Mol Sci. 2018 Dec;20(1):39. https://doi.org/10.3390/ijms20010039.

Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal.. 2007 Dec;9(12):2099–117. https://doi.org/10.1089/ars.2007.1659.

Shu L, Fu H, Pi A, Feng Y, Dong H, Si C, Li S, Zhu F, Zheng P, Zhu Q. Protective effect of andrographolide against ulcerative colitis by activating Nrf2/HO-1 mediated antioxidant response. Front Pharmacol. 2024 Jul;15:1424219. https://doi.org/10.3389/fphar.2024.1424219.

Sheikh SZ, Hegazi RA, Kobayashi T, Onyiah JC, Russo SM, Matsuoka K, Sepulveda AR, Li F, Otterbein LE, Plevy SE. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol. 2011 May;186(9):5506–13. https://doi.org/10.4049/jimmunol.1002433.

Zhang Y, Chen B, Xu N, Xu P, Lin W, Liu C, Huang P. Exosomes Promote the transition of androgen-dependent prostate cancer cells into androgen-independent manner through up-regulating the heme oxygenase-1. Int J Nanomedicine. 2021 Jan; 16:315–27. https://doi.org/10.2147/IJN.S281710.

Schwartz M, Böckmann S, Hinz B. Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells. Oncotarget. 2018 Oct;9(77):34595–616. https://doi.org/10.18632/oncotarget.26191.

Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants. 2021 May;10(5):789. https://doi.org/10.3390/antiox10050789.

Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA. 1997 Sep;94(20):10919–24. https://doi.org/10.1073/pnas.94.20.10919.

Chiang SK, Chen SE, Chang LC. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells. 2021 Sep;10(9):2401. https://doi.org/10.3390/cells10092401.

Lin PH, Lan WM, Chau LY. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene. 2013 May;32(18):2325–34. https://doi.org/10.1038/onc.2012.244.

Otterbein LE, Hedblom A, Harris C, Csizmadia E, Gallo D, Wegiel B. Heme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein. Proc Natl Acad Sci USA. 2011 Aug;108(35):14491–6. https://doi.org/10.1073/pnas.1102295108.

Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo A, Hishiki T, Suematsu M. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 2014 Mar;5(1):3480. https://doi.org/10.1038/ncomms4480.

Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U, Buranrat B. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS One. 2012 Apr;7(4):e34994. https://doi.org/10.1371/journal.pone.0034994.

Liu YS, Li HS, Qi DF, Zhang J, Jiang XC, Shi K, Zhang XJ, Zhang XH. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J Gastroenterol. 2014;20(26):8572–82. https://doi.org/10.3748/wjg.v20.i26.8572.

Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, Penacho N, Seth P, Sukhatme V, Ahmed A, Pandolfi PP, Helczynski L, Bjartell A, Persson JL, Otterbein LE. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Research. 2013 Dec 1;73(23):7009–21. https://doi.org/10.1158/0008-5472.CAN-13-1075.

Birrane G, Li H, Yang S, Tachado SD, Seng S. Cigarette smoke induces nuclear translocation of heme oxygenase 1 (HO-1) in prostate cancer cells: nuclear HO-1 promotes vascular endothelial growth factor secretion. Int J Oncol.. 2013 Jun;42(6):1919–28. https://doi.org/10.3892/ijo.2013.1910.

Miyake M, Fujimoto K, Anai S, Ohnishi S, Kuwada M, Nakai Y, Inoue T, Matsumura Y, Tomioka A, Ikeda T, Tanaka N, Hirao Y. Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol Rep. 2011 Mar;25(3):653-60. https://doi.org/10.3892/or.2010.1125.

Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo J, Cao X, Wang X, Li M. Inhibition of Nrf2/HO-1 signaling pathway by Dextran Sulfate suppresses angiogenesis of Gastric Cancer. J Cancer. 2021 Jan;12(4): 1042-1060. https://doi.org/10.7150/jca.50605.

Huang Y, Yang Y, Xu Y, Ma Q, Guo F, Zhao Y, Tao Y, Li M, Guo J. Nrf2/HO-1 axis regulates the angiogenesis of gastric cancer via targeting VEGF. Cancer Manag Res.. 2021 Apr; 13:3155–69. https://doi.org/10.2147/CMAR.S292461.

Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev. 2016 Jan;2016:1958174. https://doi.org/10.1155/2016/1958174.

Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X. Cytoprotective role of heme oxygenase-1 in cancer chemoresistance: focus on antioxidant, antiapoptotic, and pro-autophagy properties. Antioxidants. 2023 Jun;12(6):1217. https://doi.org/10.3390/antiox12061217.

Alaoui-Jamali MA, Bismar TA, Gupta A, Szarek WA, Su J, Song W, Xu Y, Xu B, Liu G, Vlahakis JZ, Roman G, Jiao J, Schipper HM. A novel experimental heme oxygenase-1–targeted therapy for hormone-refractory prostate cancer. Cancer Res. 2009 Oct ;69(20):8017–24. https://doi.org/10.1158/0008-5472.CAN-09-0419.

Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, Ott RG, Greish K, Nakamura H, Derdak S, Samorapoompichit P, Pickl WF, Sexl V, Esterbauer H, Schwarzinger I, Sillaber C, Maeda H, Valent P. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood. 2008 Feb;111(4):2200–10. https://doi.org/10.1182/blood-2006-11-055723.

Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Künzli B, Autschbach F, Meuer S, Büchler MW, Friess H. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res. 2005 May;11(10):3790–8. https://doi.org/10.1158/1078-0432.CCR-04-2159.

Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D, Meissnitzer M, Tasika E, Tannapfel A, Tiegs G. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer. 2008 Sep;123(6):1269–77. https://doi.org/10.1002/ijc.23695 .

Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem. 2019 Apr;167:439–53. https://doi.org/10.1016/j.ejmech.2019.02.027.

Consoli V, Sorrenti V, Grosso S, Vanella L. Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules. 2021 Apr;11(4):589. https://doi.org/10.3390/biom11040589.

Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015 Sep;6(27):24393–403. https://doi.org/10.18632/oncotarget.5162.

McDonagh AF. The biliverdin–bilirubin antioxidant cycle of cellular protection: Missing a wheel? Free Radic Biol Med. 2010 Sep ;49(5):814–20. https://doi.org/10.1016/j.freeradbiomed.2010.06.001.

Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA. 2004 Feb;101(6):1461–6. https://doi.org/10.1073/pnas.0308083100.

Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest. 1995 Dec;96(6):2676–82. https://doi.org/10.1172/JCI118334.

Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N. Heme oxygenase‐1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI 3K/Akt pathway. J Cell Mol Med. 2018 Nov;22(11):5311–21. https://doi.org/10.1111/jcmm.13800.

Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme oxygenase-1 inhibition potentiates the effects of nab-paclitaxel-gemcitabine and modulates the tumor microenvironment in pancreatic ductal adenocarcinoma. Cancers. 2021 May;13(9):2264. https://doi.org/10.3390/cancers13092264.

Barbagallo I, Giallongo C, Volti GL, Distefano A, Camiolo G, Raffaele M, Salerno L, Pittalà V, Sorrenti V, Avola R, Di Rosa M, Vanella L, Di Raimondo F, Tibullo D. Heme oxygenase inhibition sensitizes neuroblastoma cells to carfilzomib. Mol Neurobiol. 2019 Feb;56(2):1451–60. https://doi.org/10.1007/s12035-018-1133-6.

Ren QG, Yang SL, Li PD, Xiong JR, Fang X, Hu JL, Wang QS, Chen RW, Chen YS, Wen L, Peng M. Low heme oxygenase-1 expression promotes gastric cancer cell apoptosis, inhibits proliferation and invasion, and correlates with increased overall survival in gastric cancer patients. Oncol Rep. 2017 Nov;38(5):2852–8. https://doi.org/10.3892/or.2017.5967.

Sferrazzo G, Di Rosa M, Barone E, Li Volti G, Musso N, Tibullo D, Barbagallo I. Heme oxygenase-1 in central nervous system malignancies. J Clin Med. 2020 May;9(5):1562. https://doi.org/10.3390/jcm9051562.

Shi J, Yu J, Zhang Y, Wu L, Dong S, Wu L, Wu L, Du S, Zhang Y, Ma D. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest. 2019 Dec;99(12):1795–809. https://doi.org/10.1038/s41374-019-0286-x.

Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, Głodkowska E, Mrówka P, Issat T, Dulak J, Józkowicz A, Waś H, Adamek M, Wrzosek A, Nazarewski S, Makowski M, Stokłosa T, Jakóbisiak M, Gołab J. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene. 2006 Jun;25(24):3365–74. https://doi.org/10.1038/sj.onc.1209378.

Zou J, Jiang C, Hu Q, Jia X, Wang S, Wan S, Mao Y, Zhang D, Zhang P, Dai B, Li Y. Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species. Nat Commun. 2025 Jan;16(1):424. https://doi.org/10.1038/s41467-024-55658-0.

Downloads

Published

2025-09-25

Issue

Section

Review Papers

How to Cite

1.
Heme Oxygenase-1-Targeted Cancer Therapy: At the Crossroads of Cytoprotection and Tumour Progression. JMS [Internet]. 2025 Sep. 25 [cited 2025 Oct. 2];94(3):e1358. Available from: https://horkruks.ump.edu.pl/index.php/JMS/article/view/1358