Indications and timing for genetic testing in ovarian cancer

Authors

  • Cezary Miedziarek Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, Poland https://orcid.org/0000-0002-1933-7530
  • Maksymilian Markwitz Department of Dermatology, Poznan University of Medical Sciences, Poland https://orcid.org/0009-0003-5417-1075
  • Michał Potograbski Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, Poland
  • Mikołaj Piotr Zaborowski Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland https://orcid.org/0000-0002-4400-6688

DOI:

https://doi.org/10.20883/medical.e1274

Keywords:

ovarian cancer, BRCA, HRD

Abstract

Modern management of ovarian cancer (OC) relies on molecular diagnostics, with genetic testing playing a central role in therapeutic decisions. High-grade serous ovarian cancer (HGSOC) is frequently associated with mutations in the BRCA1 and BRCA2 genes, as well as other alterations within the homologous recombination repair (HRR) pathway.  The identification of pathogenic variants is critical for selecting patients eligible for treatment with poly (ADP-ribose) polymerase inhibitors (PARPi), which significantly improve progression-free survival, especially in individuals with BRCA mutations and homologous recombination deficiency (HRD).

Current guidelines recommend BRCA testing at diagnosis for all patients with HGSOC, followed by HRD testing. Various techniques are used to assess genetic alterations and HRD status. Commercial tests assess mutations in genes in HRR pathways, genomic instability, or HRR functional status to quantify HRD.

Despite the availability of these assays, challenges remain regarding test standardisation, predictive accuracy, and cost-effectiveness. Moreover, emerging research highlights the potential for artificial intelligence (AI) to enhance molecular profiling, utilising whole-slide imaging (WSI) and deep learning to predict homologous recombination deficiency (HRD) and other tumour characteristics.

The integration of molecular subtypes, as defined by The Cancer Genome Atlas (TCGA), into routine clinical practice holds promise for tailoring therapy beyond BRCA or homologous recombination deficiency (HRD) status. As the field advances, comprehensive genetic testing combined with AI-driven analytics may become the cornerstone of precision oncology in ovarian cancer.

Downloads

Download data is not yet available.

References

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA A Cancer J Clinicians 2018;68:284–96. https://doi.org/10.3322/caac.21456.

Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precision Oncology 2022:e2200085. https://doi.org/10.1200/PO.22.00085.

Yamulla RJ, Nalubola S, Flesken-Nikitin A, Nikitin AY, Schimenti JC. Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Reports 2020;32:108086. https://doi.org/10.1016/j.celrep.2020.108086.

The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474:609–15. https://doi.org/10.1038/nature10166.

Bukłaho PA, Kiśluk J, Wasilewska N, Nikliński J. Molecular features as promising biomarkers in ovarian cancer. Adv Clin Exp Med 2023;32:1029–40. https://doi.org/10.17219/acem/159799.

Moyer CL, Ivanovich J, Gillespie JL, Doberstein R, Radke MR, Richardson ME, Kaufmann SH, Swisher EM, Goodfellow PJ. Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Research 2020;80:857–67. https://doi.org/10.1158/0008-5472.CAN-19-1991.

Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KBM, Concannon P, Cuggia A, Culver JO, Damiola F, De Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee ASG, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte A-B, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, Van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon S-Y, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SHL, Balmaña J, Houdayer C, James P, El-Haffaf Z, Ehrencrona H, Janatova M, Peterlongo P, Nevanlinna H, Schmutzler R, Teo S-H, Robson M, Pal T, Couch F, Weitzel JN, Elliott A, Southey M, Winqvist R, Easton DF, Foulkes WD, Antoniou AC, Tischkowitz M. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. JCO 2020;38:674–85. https://doi.org/10.1200/JCO.19.01907.

Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. CMAR 2021;Volume 13:3081–100. https://doi.org/10.2147/CMAR.S292992.

Gorski JW, Ueland FR, Kolesar JM. CCNE1 Amplification as a Predictive Biomarker of Chemotherapy Resistance in Epithelial Ovarian Cancer. Diagnostics 2020;10:279. https://doi.org/10.3390/diagnostics10050279.

Feng Y, Wang D, Xiong L, Zhen G, Tan J. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int 2021;21:249. https://doi.org/10.1186/s12935-021-01953-5.

Lawrenson K, Iversen ES, Tyrer J, Weber RP, Concannon P, Hazelett DJ, Li Q, Marks JR, Berchuck A, Lee JM, Aben KKH, Anton-Culver H, Antonenkova N, Australian Cancer Study (Ovarian Cancer), Australian Ovarian Cancer Study Group, Bandera EV, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Chang-Claude J, Chenevix-Trench G, Chen A, Chen Z, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Plisiecka-Halasa J, Dennis J, Dicks E, Doherty JA, Dörk T, Du Bois A, Eccles D, Easton DT, Edwards RP, Eilber U, Ekici AB, Fasching PA, Fridley BL, Gao Y-T, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall C, Hosono S, Jakubowska A, Paul J, Jensen A, Karlan BY, Kjaer SK, Kelemen LE, Kellar M, Kelley JL, Kiemeney LA, Krakstad C, Lambrechts D, Lambrechts S, Le ND, Lee AW, Cannioto R, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, Nevanlinna H, McNeish I, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Noor Azmi MA, Odunsi K, Olson SH, Orlow I, Orsulic S, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Phelan CM, Pike MC, Poole EM, Ramus SJ, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Budzilowska A, Sellers TA, Shu X-O, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Sucheston L, Tangen IL, Teo S-H, Terry KL, Thompson PJ, Timorek A, Tworoger SS, Nieuwenhuysen EV, Vergote I, Vierkant RA, Wang-Gohrke S, Walsh C, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Woo Y-L, Wu X, Wu AH, Yang H, Zheng W, Ziogas A, Coetzee GA, Freedman ML, Monteiro ANA, Moes-Sosnowska J, Kupryjanczyk J, Pharoah PD, Gayther SA, Schildkraut JM. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. CARCIN 2015;36:1341–53. https://doi.org/10.1093/carcin/bgv138.

Arcieri M, Tius V, Andreetta C, Restaino S, Biasioli A, Poletto E, Damante G, Ercoli A, Driul L, Fagotti A, Lorusso D, Scambia G, Vizzielli G. How BRCA and homologous recombination deficiency change therapeutic strategies in ovarian cancer: a review of literature. Front Oncol 2024;14:1335196. https://doi.org/10.3389/fonc.2024.1335196.

Kowalik A, Chudecka-Głaz A, Kufel-Grabowska J, Skoneczna I, Kubiatowski T. Diagnostics and treatment of BRCA-associated cancers with olaparib — expert position statement. Oncol Clin Pract 2024;20:229–44. https://doi.org/10.5603/ocp.99216.

Baradács I, Teutsch B, Váradi A, Bilá A, Vincze Á, Hegyi P, Fazekas T, Komoróczy B, Nyirády P, Ács N, Bánhidy F, Lintner B. PARP inhibitor era in ovarian cancer treatment: a systematic review and meta-analysis of randomized controlled trials. J Ovarian Res 2024;17:53. https://doi.org/10.1186/s13048-024-01362-y.

Giannini A, Di Dio C, Di Donato V, D’oria O, Salerno MG, Capalbo G, Cuccu I, Perniola G, Muzii L, Bogani G. PARP Inhibitors in Newly Diagnosed and Recurrent Ovarian Cancer. American Journal of Clinical Oncology 2023;46:414–9. https://doi.org/10.1097/COC.0000000000001024.

Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024;14:585. https://doi.org/10.3390/biom14050585.

Tangjitgamol S, Manusirivithaya S, Laopaiboon M, Lumbiganon P, Bryant A. Interval debulking surgery for advanced epithelial ovarian cancer. Cochrane Database of Systematic Reviews 2016;2016. https://doi.org/10.1002/14651858.CD006014.pub7.

Mangogna A, Munari G, Pepe F, Maffii E, Giampaolino P, Ricci G, Fassan M, Malapelle U, Biffi S. Homologous Recombination Deficiency in Ovarian Cancer: from the Biological Rationale to Current Diagnostic Approaches. JPM 2023;13:284. https://doi.org/10.3390/jpm13020284.

Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993.

Daly MB, Pal T, Maxwell KN, Churpek J, Kohlmann W, AlHilli Z, Arun B, Buys SS, Cheng H, Domchek SM, Friedman S, Giri V, Goggins M, Hagemann A, Hendrix A, Hutton ML, Karlan BY, Kassem N, Khan S, Khoury K, Kurian AW, Laronga C, Mak JS, Mansour J, McDonnell K, Menendez CS, Merajver SD, Norquist BS, Offit K, Rash D, Reiser G, Senter-Jamieson L, Shannon KM, Visvanathan K, Welborn J, Wick MJ, Wood M, Yurgelun MB, Dwyer MA, Darlow SD. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024: Featured Updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network 2023;21:1000–10. https://doi.org/10.6004/jnccn.2023.0051.

Manchana T, Phoolcharoen N, Tantbirojn P. BRCA mutation in high grade epithelial ovarian cancers. Gynecologic Oncology Reports 2019;29:102–5. https://doi.org/10.1016/j.gore.2019.07.007.

Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Annals of Oncology 2016;27:1449–55. https://doi.org/10.1093/annonc/mdw142.

Banerjee S, Moore KN, Colombo N, Scambia G, Kim B-G, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS, Gourley C, Oza A, González-Martín A, Aghajanian C, Bradley WH, Holmes E, Lowe ES, DiSilvestro P. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2021;22:1721–31. https://doi.org/10.1016/S1470-2045(21)00531-3.

Poveda A, Floquet A, Ledermann JA, Asher R, Penson RT, Oza AM, Korach J, Huzarski T, Pignata S, Friedlander M, Baldoni A, Park-Simon T-W, Tamura K, Sonke GS, Lisyanskaya A, Kim J-H, Filho EA, Milenkova T, Lowe ES, Rowe P, Vergote I, Pujade-Lauraine E, Korach J, Huzarski T, Byrski T, Pautier P, Friedlander M, Harter P, Colombo N, Pignata S, Scambia G, Nicoletto M, Nussey F, Clamp A, Penson R, Oza A, Poveda Velasco A, Rodrigues M, Lotz J-P, Selle F, Ray-Coquard I, Provencher D, Prat Aparicio A, Vidal Boixader L, Scott C, Tamura K, Yunokawa M, Lisyanskaya A, Medioni J, Pécuchet N, Dubot C, De La Motte Rouge T, Kaminsky M-C, Weber B, Lortholary A, Parkinson C, Ledermann J, Williams S, Banerjee S, Cosin J, Hoffman J, Penson R, Plante M, Covens A, Sonke G, Joly F, Floquet A, Banerjee S, Hirte H, Amit A, Park-Simon T-W, Matsumoto K, Tjulandin S, Hoon Kim J, Gladieff L, Sabbatini R, O’Malley D, Timmins P, Kredentser D, Laínez Milagro N, Barretina Ginesta MP, Tibau Martorell A, Gómez De Liaño Lista A, Ojeda González B, Mileshkin L, Mandai M, Boere I, Ottevanger P, Nam J-H, Filho E, Hamizi S, Cognetti F, Warshal D, Dickson-Michelson E, Kamelle S, McKenzie N, Rodriguez G, Armstrong D, Chalas E, Celano P, Behbakht K, Davidson S, Welch S, Helpman L, Fishman A, Bruchim I, Sikorska M, Słowińska A, Rogowski W, Bidziński M, Śpiewankiewicz B, Casado Herraez A, Mendiola Fernández C, Gropp-Meier M, Saito T, Takehara K, Enomoto T, Watari H, Choi CH, Kim B-G, Weon Kim J, Hegg R, Vergote I. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology 2021;22:620–31. https://doi.org/10.1016/S1470-2045(21)00073-5.

González-Martín A, Pothuri B, Vergote I, Graybill W, Lorusso D, McCormick CC, Freyer G, Backes F, Heitz F, Redondo A, Moore RG, Vulsteke C, O’Cearbhaill RE, Malinowska IA, Shtessel L, Compton N, Mirza MR, Monk BJ. Progression-free survival and safety at 3.5 years of follow-up: results from the randomised phase 3 PRIMA/ENGOT-OV26/GOG-3012 trial of niraparib maintenance treatment in patients with newly diagnosed ovarian cancer. European Journal of Cancer 2023;189:112908. https://doi.org/10.1016/j.ejca.2023.04.024.

Milano L, Alenezi WM, Fierheller CT, Serruya C, Revil T, Oros KK, Bruce J, Spiegelman D, Pugh T, Masson A-MM-, Provencher D, Foulkes WD, Haffaf ZE, Rouleau G, Bouchard L, Greenwood CMT, Ragoussis J, Tonin PN, Masson J-Y. Genetic and molecular analyses of candidate germline BRIP1/FANCJ variants implicated in breast and ovarian cancer 2023. https://doi.org/10.1101/2023.07.03.23290133.

Morgan RD, Burghel GJ, Flaum N, Schlecht H, Clamp AR, Hasan J, Mitchell C, Salih Z, Moon S, Hogg M, Lord R, Forde C, Lalloo F, Woodward ER, Crosbie EJ, Taylor SS, Jayson GC, Evans DGR. Extended panel testing in ovarian cancer reveals BRIP1 as the third most important predisposition gene. Genetics in Medicine 2024;26:101230. https://doi.org/10.1016/j.gim.2024.101230.

Daly MB, Pal T, Maxwell KN, Churpek J, Kohlmann W, AlHilli Z, Arun B, Buys SS, Cheng H, Domchek SM, Friedman S, Giri V, Goggins M, Hagemann A, Hendrix A, Hutton ML, Karlan BY, Kassem N, Khan S, Khoury K, Kurian AW, Laronga C, Mak JS, Mansour J, McDonnell K, Menendez CS, Merajver SD, Norquist BS, Offit K, Rash D, Reiser G, Senter-Jamieson L, Shannon KM, Visvanathan K, Welborn J, Wick MJ, Wood M, Yurgelun MB, Dwyer MA, Darlow SD. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024: Featured Updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network 2023;21:1000–10. https://doi.org/10.6004/jnccn.2023.0051.

Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020;10:301. https://doi.org/10.3389/fonc.2020.00301.

Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KBM, Concannon P, Cuggia A, Culver JO, Damiola F, De Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee ASG, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte A-B, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, Van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon S-Y, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SHL, Balmaña J, Houdayer C, James P, El-Haffaf Z, Ehrencrona H, Janatova M, Peterlongo P, Nevanlinna H, Schmutzler R, Teo S-H, Robson M, Pal T, Couch F, Weitzel JN, Elliott A, Southey M, Winqvist R, Easton DF, Foulkes WD, Antoniou AC, Tischkowitz M. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. JCO 2020;38:674–85. https://doi.org/10.1200/JCO.19.01907.

Tischkowitz M, Balmaña J, Foulkes WD, James P, Ngeow J, Schmutzler R, Voian N, Wick MJ, Stewart DR, Pal T. Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine 2021;23:1416–23. https://doi.org/10.1038/s41436-021-01151-8.

Long G, Hu K, Zhang X, Zhou L, Li J. Spectrum of BRCA1 interacting helicase 1 aberrations and potential prognostic and therapeutic implication: a pan cancer analysis. Sci Rep 2023;13:4435. https://doi.org/10.1038/s41598-023-31109-6.

Mu W, Lu H-M, Chen J, Li S, Elliott AM. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. The Journal of Molecular Diagnostics 2016;18:923–32. https://doi.org/10.1016/j.jmoldx.2016.07.006.

Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, Kiselova A, Yee D, Goldman A, Dowar M, Sukhu B, Kandel R, Siminovitch K. Long-Range PCR and Next-Generation Sequencing of BRCA1 and BRCA2 in Breast Cancer. The Journal of Molecular Diagnostics 2012;14:467–75. https://doi.org/10.1016/j.jmoldx.2012.03.006.

Liu K, Hu L, Wang S, Chen X, Liu Y, Zhao S, Wang H, Li L, Li H. An efficient qPCR assay for the quantification of human cells in preclinical animal models by targeting human specific DNA in the intron of BRCA1. Mol Biol Rep 2023;50:9229–37. https://doi.org/10.1007/s11033-023-08853-z.

Lucky MH, Baig S, Hanif M, H Asghar A. Systematic Review: Comprehensive Methods for Detecting BRCA1 and BRCA2 Mutations in Breast and Ovarian Cancer. Asian Pac J Cancer Biol 2025;10:229–38. https://doi.org/10.31557/apjcb.2025.10.1.229-238.

Ahmadloo S, Nakaoka H, Hayano T, Hosomichi K, You H, Utsuno E, Sangai T, Nishimura M, Matsushita K, Hata A, Nomura F, Inoue I. Rapid and cost-effective high-throughput sequencing for identification of germline mutations of BRCA1 and BRCA2. J Hum Genet 2017;62:561–7. https://doi.org/10.1038/jhg.2017.5.

Wallace AJ. New challenges for BRCA testing: a view from the diagnostic laboratory. Eur J Hum Genet 2016;24:S10–8. https://doi.org/10.1038/ejhg.2016.94.

Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024;19:9. https://doi.org/10.1186/s13000-023-01431-8.

Witz A, Dardare J, Betz M, Michel C, Husson M, Gilson P, Merlin J-L, Harlé A. Homologous recombination deficiency (HRD) testing landscape: clinical applications and technical validation for routine diagnostics. Biomark Res 2025;13:31. https://doi.org/10.1186/s40364-025-00740-y.

Riahi A, Chabouni-Bouhamed H, Kharrat M. Prevalence of BRCA1 and BRCA2 large genomic rearrangements in Tunisian high risk breast/ovarian cancer families: Implications for genetic testing. Cancer Genetics 2017;210:22–7. https://doi.org/10.1016/j.cancergen.2016.11.002.

Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. Ann Transl Med 2020;8:1703–1703. https://doi.org/10.21037/atm-20-1422.

Ray-Coquard I, Leary A, Pignata S, Cropet C, González-Martín A, Marth C, Nagao S, Vergote I, Colombo N, Mäenpää J, Selle F, Sehouli J, Lorusso D, Guerra Alia EM, Bogner G, Yoshida H, Lefeuvre-Plesse C, Buderath P, Mosconi AM, Lortholary A, Burges A, Medioni J, El-Balat A, Rodrigues M, Park-Simon T-W, Dubot C, Denschlag D, You B, Pujade-Lauraine E, Harter P. Olaparib plus bevacizumab first-line maintenance in ovarian cancer: final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Annals of Oncology 2023;34:681–92. https://doi.org/10.1016/j.annonc.2023.05.005.

Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Annals of Oncology 2020;31:1606–22. https://doi.org/10.1016/j.annonc.2020.08.2102.

Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, Okamoto A, Moore KN, Efrat Ben-Baruch N, Werner TL, Cloven NG, Oaknin A, DiSilvestro PA, Morgan MA, Nam J-H, Leath CA, Nicum S, Hagemann AR, Littell RD, Cella D, Baron-Hay S, Garcia-Donas J, Mizuno M, Bell-McGuinn K, Sullivan DM, Bach BA, Bhattacharya S, Ratajczak CK, Ansell PJ, Dinh MH, Aghajanian C, Bookman MA. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N Engl J Med 2019;381:2403–15. https://doi.org/10.1056/NEJMoa1909707.

González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, McCormick C, Lorusso D, Hoskins P, Freyer G, Baumann K, Jardon K, Redondo A, Moore RG, Vulsteke C, O’Cearbhaill RE, Lund B, Backes F, Barretina-Ginesta P, Haggerty AF, Rubio-Pérez MJ, Shahin MS, Mangili G, Bradley WH, Bruchim I, Sun K, Malinowska IA, Li Y, Gupta D, Monk BJ. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 2019;381:2391–402. https://doi.org/10.1056/NEJMoa1910962.

Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, Fujiwara K, Vergote I, Colombo N, Mäenpää J, Selle F, Sehouli J, Lorusso D, Guerra Alía EM, Reinthaller A, Nagao S, Lefeuvre-Plesse C, Canzler U, Scambia G, Lortholary A, Marmé F, Combe P, De Gregorio N, Rodrigues M, Buderath P, Dubot C, Burges A, You B, Pujade-Lauraine E, Harter P. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N Engl J Med 2019;381:2416–28. https://doi.org/10.1056/NEJMoa1911361.

Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp A, Scambia G, Leary A, Holloway RW, Gancedo MA, Fong PC, Goh JC, O’Malley DM, Armstrong DK, Garcia-Donas J, Swisher EM, Floquet A, Konecny GE, McNeish IA, Scott CL, Cameron T, Maloney L, Isaacson J, Goble S, Grace C, Harding TC, Raponi M, Sun J, Lin KK, Giordano H, Ledermann JA, Buck M, Dean A, Friedlander ML, Goh JC, Harnett P, Kichenadasse G, Scott CL, Denys H, Dirix L, Vergote I, Elit L, Ghatage P, Oza AM, Plante M, Provencher D, Weberpals JI, Welch S, Floquet A, Gladieff L, Joly F, Leary A, Lortholary A, Lotz J, Medioni J, Tredan O, You B, El-Balat A, Hänle C, Krabisch P, Neunhöffer T, Pölcher M, Wimberger P, Amit A, Kovel S, Leviov M, Safra T, Shapira-Frommer R, Stemmer S, Bologna A, Colombo N, Lorusso D, Pignata S, Sabbatini RF, Scambia G, Tamberi S, Zamagni C, Fong PC, O’Donnell A, Gancedo MA, Herraez AC, Garcia-Donas J, Guerra EM, Oaknin A, Palacio I, Romero I, Sanchez A, Banerjee SN, Clamp A, Drew Y, Gabra HG, Jackson D, Ledermann JA, McNeish IA, Parkinson C, Powell M, Aghajanian C, Armstrong DK, Birrer MJ, Buss MK, Chambers SK, Chen L, Coleman RL, Holloway RW, Konecny GE, Ma L, Morgan MA, Morris RT, Mutch DG, O’Malley DM, Slomovitz BM, Swisher EM, Vanderkwaak T, Vulfovich M. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 2017;390:1949–61. https://doi.org/10.1016/S0140-6736(17)32440-6.

Li N, Zhu J, Yin R, Wang J, Pan L, Kong B, Zheng H, Liu J, Wu X, Wang L, Huang Y, Wang K, Zou D, Zhao H, Wang C, Lu W, Lin A, Lou G, Li G, Qu P, Yang H, Zhen X, Hang W, Hou J, Wu L. Efficacy and safety of niraparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer using an individualized starting dose (PRIME Study): A randomized, double-blind, placebo-controlled, phase 3 trial (LBA 5). Gynecologic Oncology 2022;166:S50–1. https://doi.org/10.1016/S0090-8258(22)01298-7.

Pellegrino B, Capoluongo ED, Bagnoli M, Arenare L, Califano D, Scambia G, Cecere SC, Silini EM, Scaglione GL, Spina A, Tognon G, Campanini N, Pisano C, Russo D, Pettinato A, Scollo P, Iemmolo R, De Cecco L, Musolino A, Marchini S, Beltrame L, Paracchini L, Perrone F, Mezzanzanica D, Pignata S. Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial. ESMO Open 2025;10:104091. https://doi.org/10.1016/j.esmoop.2024.104091.

Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024;14:1405361. https://doi.org/10.3389/fonc.2024.1405361.

Daly GR, Naidoo S, Alabdulrahman M, McGrath J, Dowling GP, AlRawashdeh MM, Hill ADK, Varešlija D, Young L. Screening and Testing for Homologous Recombination Repair Deficiency (HRD) in Breast Cancer: an Overview of the Current Global Landscape. Curr Oncol Rep 2024;26:890–903. https://doi.org/10.1007/s11912-024-01560-3.

Rognoni C, Lorusso D, Costa F, Armeni P. Cost-Effectiveness Analysis of HRD Testing for Previously Treated Patients with Advanced Ovarian Cancer in Italy. Adv Ther 2024;41:1385–400. https://doi.org/10.1007/s12325-024-02791-3.

Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open 2021;6:100144. https://doi.org/10.1016/j.esmoop.2021.100144.

Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Annals of Oncology 2020;31:1606–22. https://doi.org/10.1016/j.annonc.2020.08.2102.

Kekeeva T, Andreeva Y, Tanas A, Kalinkin A, Khokhlova S, Tikhomirova T, Tyulyandina A, Popov A, Kuzmenko M, Volkonsky M, Chernorubashkina N, Saevets V, Dmitriev V, Nechushkina V, Vedrova O, Andreev S, Kutsev S, Strelnikov V. HRD Testing of Ovarian Cancer in Routine Practice: What Are We Dealing With? IJMS 2023;24:10497. https://doi.org/10.3390/ijms241310497.

Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, Colombo N, DeFazio A, McNeish IA, Nogueira-Rodrigues A, Oaknin A, Pignata S, Pujade-Lauraine É, Rouleau É, Ryška A, Van Der Merwe N, Van Gorp T, Vergote I, Weichert W, Wu X, Ray-Coquard I, Pujol P. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. European Journal of Cancer 2025;215:115169. https://doi.org/10.1016/j.ejca.2024.115169.

Feng J, Lan Y, Liu F, Yuan Y, Ge J, Wei S, Luo H, Li J, Luo T, Bian X. Combination of genomic instability score and TP53 status for prognosis prediction in lung adenocarcinoma. Npj Precis Onc 2023;7:110. https://doi.org/10.1038/s41698-023-00465-x.

Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals 2021;14:57. https://doi.org/10.3390/ph14010057.

McMahon JN, Gaffney EF, Aliaga-Kelly WJ, Stephens JF, Jalali A, Curran B. P53 loss of heterozygosity (LOH) in formalin-fixed paraffin-embedded leiomyosarcoma (LMS): a novel report. Ir J Med Sci 2024;193:65–71. https://doi.org/10.1007/s11845-023-03370-1.

Stewart MD, Merino Vega D, Arend RC, Baden JF, Barbash O, Beaubier N, Collins G, French T, Ghahramani N, Hinson P, Jelinic P, Marton MJ, McGregor K, Parsons J, Ramamurthy L, Sausen M, Sokol ES, Stenzinger A, Stires H, Timms KM, Turco D, Wang I, Williams JA, Wong-Ho E, Allen J. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. The Oncologist 2022;27:167–74. https://doi.org/10.1093/oncolo/oyab053.

Schonhoft JD, Zhao JL, Jendrisak A, Carbone EA, Barnett ES, Hullings MA, Gill A, Sutton R, Lee J, Dago AE, Landers M, Bakhoum SF, Wang Y, Gonen M, Dittamore R, Scher HI. Morphology-Predicted Large-Scale Transition Number in Circulating Tumor Cells Identifies a Chromosomal Instability Biomarker Associated with Poor Outcome in Castration-Resistant Prostate Cancer. Cancer Research 2020;80:4892–903. https://doi.org/10.1158/0008-5472.CAN-20-1216.

Birkbak NJ, Wang ZC, Kim J-Y, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL. Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents. Cancer Discovery 2012;2:366–75. https://doi.org/10.1158/2159-8290.CD-11-0206.

Llop-Guevara A, Loibl S, Villacampa G, Vladimirova V, Schneeweiss A, Karn T, Zahm D-M, Herencia-Ropero A, Jank P, Van Mackelenbergh M, Fasching PA, Marmé F, Stickeler E, Schem C, Dienstmann R, Florian S, Nekljudova V, Balmaña J, Hahnen E, Denkert C, Serra V. Association of RAD51 with homologous recombination deficiency (HRD) and clinical outcomes in untreated triple-negative breast cancer (TNBC): analysis of the GeparSixto randomized clinical trial. Annals of Oncology 2021;32:1590–6. https://doi.org/10.1016/j.annonc.2021.09.003.

Gómez-Flores-Ramos L, Álvarez-Gómez RM, Villarreal-Garza C, Wegman-Ostrosky T, Mohar A. Breast cancer genetics in young women: What do we know? Mutation Research/Reviews in Mutation Research 2017;774:33–45. https://doi.org/10.1016/j.mrrev.2017.08.001.

Casartelli C, Tommasi C, Lazzarin A, Corianò M, Tornali C, Serra O, Campanini N, Gutiérrez-Enríquez S, Sikokis A, Zanoni D, Minari R, Bortesi B, Michiara M, Boggiani D, Uliana V, Llop-Guevara A, Serra V, Musolino A, Pellegrino B. Functional HRD by RAD51 identifies BRCA1 VUS associated with loss of gene function and response to DNA-damaging agents. ESMO Open 2024;9:103629. https://doi.org/10.1016/j.esmoop.2024.103629.

Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, Colombo N, DeFazio A, McNeish IA, Nogueira-Rodrigues A, Oaknin A, Pignata S, Pujade-Lauraine É, Rouleau É, Ryška A, Van Der Merwe N, Van Gorp T, Vergote I, Weichert W, Wu X, Ray-Coquard I, Pujol P. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. European Journal of Cancer 2025;215:115169. https://doi.org/10.1016/j.ejca.2024.115169.

Milbury CA, Creeden J, Yip W-K, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS ONE 2022;17:e0264138. https://doi.org/10.1371/journal.pone.0264138.

Trautmann M, Falkenberg K, Braun L, Puller A-C, Kirmse S, Heinst L, Berthold R, Isfort I, Abbas M, Wardelmann E, Hartmann W. 1253P Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD). Annals of Oncology 2023;34:S728. https://doi.org/10.1016/j.annonc.2023.09.2342.

Boidot R, Blum MGB, Wissler M-P, Gottin C, Ruzicka J, Chevrier S, Delhomme TM, Audoux J, Jeanniard A, Just P-A, Harter P, Pignata S, González-Martin A, Marth C, Mäenpää J, Colombo N, Vergote I, Fujiwara K, Duforet-Frebourg N, Bertrand D, Philippe N, Ray-Coquard I, Pujade-Lauraine E. Clinical evaluation of a low-coverage whole-genome test for detecting homologous recombination deficiency in ovarian cancer. European Journal of Cancer 2024;202:113978. https://doi.org/10.1016/j.ejca.2024.113978.

Pozzorini C, Andre G, Coletta T, Buisson A, Bieler J, Ferrer L, Kempfer R, Saintigny P, Harlé A, Vacirca D, Barberis M, Gilson P, Roma C, Saitta A, Smith E, Consales Barras F, Ripol L, Fritzsche M, Marques AC, Alkodsi A, Marin R, Normanno N, Grimm C, Müllauer L, Harter P, Pignata S, Gonzalez-Martin A, Denison U, Fujiwara K, Vergote I, Colombo N, Willig A, Pujade-Lauraine E, Just P-A, Ray-Coquard I, Xu Z. GIInger predicts homologous recombination deficiency and patient response to PARPi treatment from shallow genomic profiles. Cell Reports Medicine 2023;4:101344. https://doi.org/10.1016/j.xcrm.2023.101344.

Fumagalli C, Betella I, Ranghiero A, Guerini-Rocco E, Bonaldo G, Rappa A, Vacirca D, Colombo N, Barberis M. In-house testing for homologous recombination repair deficiency (HRD) testing in ovarian carcinoma: a feasibility study comparing AmoyDx HRD Focus panel with Myriad myChoiceCDx assay. Pathologica 2022;114:288–94. https://doi.org/10.32074/1591-951X-791.

AmoyDx® HRD Complete Panel​ - [AmoyDx]. https://www.amoydiagnostics.com/products/amoydx-hrd-complete-panel (accessed April 3, 2025).

The Cancer Genome Atlas Research Network, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67–73. https://doi.org/10.1038/nature12113.

Espinosa I, D’Angelo E, Prat J. Endometrial carcinoma: 10 years of TCGA (the cancer genome atlas): A critical reappraisal with comments on FIGO 2023 staging. Gynecologic Oncology 2024;186:94–103. https://doi.org/10.1016/j.ygyno.2024.04.008.

Kommoss S, Heitz F, Winterhoff BJN, Wang C, Sehouli J, Aliferis C, Kimmig R, Wang J, Ma S, De Gregorio N, Mahner S, Du Bois A, Tourani R, Park-Simon T-W, Baumann K, Taran FA, Kommoss F, Schroeder W, Dowdy SC, Pfisterer J. Significant overall survival improvement in proliferative subtype ovarian cancer patients receiving bevacizumab. JCO 2018;36:5520–5520. https://doi.org/10.1200/JCO.2018.36.15_suppl.5520.

Winterhoff BJN, Kommoss S, Oberg AL, Wang C, Riska SM, Konecny GE, Fan J-B, Shridhar V, Goode EL, Kommoss F, Du Bois A, Hilpert F, Chien J, Embleton AC, Parmar M, Kaplan RS, Perren T, Hartmann LC, Pfisterer J, Dowdy SC. Bevacizumab and improvement of progression-free survival (PFS) for patients with the mesenchymal molecular subtype of ovarian cancer. JCO 2014;32:5509–5509. https://doi.org/10.1200/jco.2014.32.15_suppl.5509.

Kommoss S, Winterhoff B, Oberg AL, Konecny GE, Wang C, Riska SM, Fan J-B, Maurer MJ, April C, Shridhar V, Kommoss F, Du Bois A, Hilpert F, Mahner S, Baumann K, Schroeder W, Burges A, Canzler U, Chien J, Embleton AC, Parmar M, Kaplan R, Perren T, Hartmann LC, Goode EL, Dowdy SC, Pfisterer J. Bevacizumab May Differentially Improve Ovarian Cancer Outcome in Patients with Proliferative and Mesenchymal Molecular Subtypes. Clinical Cancer Research 2017;23:3794–801. https://doi.org/10.1158/1078-0432.CCR-16-2196.

Murakami R, Matsumura N, Michimae H, Tanabe H, Yunokawa M, Iwase H, Sasagawa M, Nakamura T, Tokuyama O, Takano M, Sugiyama T, Sawasaki T, Isonishi S, Takehara K, Nakai H, Okamoto A, Mandai M, Konishi I. The mesenchymal transition subtype more responsive to dose dense taxane chemotherapy combined with carboplatin than to conventional taxane and carboplatin chemotherapy in high grade serous ovarian carcinoma: A survey of Japanese Gynecologic Oncology Group study (JGOG3016A1). Gynecologic Oncology 2019;153:312–9. https://doi.org/10.1016/j.ygyno.2019.02.010.

Murakami R, Matsumura N, Mandai M, Yoshihara K, Tanabe H, Nakai H, Yamanoi K, Abiko K, Yoshioka Y, Hamanishi J, Yamaguchi K, Baba T, Koshiyama M, Enomoto T, Okamoto A, Murphy SK, Mori S, Mikami Y, Minamiguchi S, Konishi I. Establishment of a Novel Histopathological Classification of High-Grade Serous Ovarian Carcinoma Correlated with Prognostically Distinct Gene Expression Subtypes. The American Journal of Pathology 2016;186:1103–13. https://doi.org/10.1016/j.ajpath.2015.12.029.

Reese SE, Archer KJ, Therneau TM, Atkinson EJ, Vachon CM, De Andrade M, Kocher J-PA, Eckel-Passow JE. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics 2013;29:2877–83. https://doi.org/10.1093/bioinformatics/btt480.

Zhang S, Jing Y, Zhang M, Zhang Z, Ma P, Peng H, Shi K, Gao W-Q, Zhuang G. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci Rep 2015;5:16066. https://doi.org/10.1038/srep16066.

Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017;2:230–43. https://doi.org/10.1136/svn-2017-000101.

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med 2019;25:24–9. https://doi.org/10.1038/s41591-018-0316-z.

Hatamikia S, Nougaret S, Panico C, Avesani G, Nero C, Boldrini L, Sala E, Woitek R. Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers. Eur Radiol Exp 2023;7:50. https://doi.org/10.1186/s41747-023-00364-7.

Orr BC, Uihlein AH, Montgomery R, Radolec M, Edwards RP. Using artificial intelligence-powered evidence-based molecular decision-making for improved outcomes in ovarian cancer. JCO 2024;42:5555–5555. https://doi.org/10.1200/JCO.2024.42.16_suppl.5555.

Bergstrom EN, Abbasi A, Díaz-Gay M, Galland L, Ladoire S, Lippman SM, Alexandrov LB. Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides. JCO 2024;42:3550–60. https://doi.org/10.1200/JCO.23.02641.

Frenel J-S, Bossard C, Rynkiewicz J, Thomas F, Salhi Y, Salhi S, Chetritt J. Artificial intelligence to predict homologous recombination deficiency in ovarian cancer from whole-slide histopathological images. JCO 2024;42:5578–5578. https://doi.org/10.1200/JCO.2024.42.16_suppl.5578.

Loeffler CML, El Nahhas OSM, Muti HS, Carrero ZI, Seibel T, Van Treeck M, Cifci D, Gustav M, Bretz K, Gaisa NT, Lehmann K-V, Leary A, Selenica P, Reis-Filho JS, Ortiz-Bruechle N, Kather JN. Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types. BMC Biol 2024;22:225. https://doi.org/10.1186/s12915-024-02022-9.

Zhang K, Qiu Y, Feng S, Yin H, Liu Q, Zhu Y, Cui H, Wei X, Wang G, Wang X, Shen Y. Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images. J Transl Med 2025;23:267. https://doi.org/10.1186/s12967-025-06234-7.

Ueda A, Nakai H, Miyagawa C, Otani T, Yoshida M, Murakami R, Komiyama S, Tanigawa T, Yokoi T, Takano H, Baba T, Miura K, Shimada M, Kigawa J, Enomoto T, Hamanishi J, Okamoto A, Okuno Y, Mandai M, Matsumura N. Artificial Intelligence-Based Histopathological Subtyping of High-Grade Serous Ovarian Cancer. The American Journal of Pathology 2024;194:1913–23. https://doi.org/10.1016/j.ajpath.2024.06.010.

Geng T, Zheng M, Wang Y, Reseland JE, Samara A. An artificial intelligence prediction model based on extracellular matrix proteins for the prognostic prediction and immunotherapeutic evaluation of ovarian serous adenocarcinoma. Front Mol Biosci 2023;10:1200354. https://doi.org/10.3389/fmolb.2023.1200354.

Sharma O, Gudoityte G, Minozada R, Kallioniemi OP, Turkki R, Paavolainen L, Seashore-Ludlow B. Evaluating feature extraction in ovarian cancer cell line co-cultures using deep neural networks. Commun Biol 2025;8:303. https://doi.org/10.1038/s42003-025-07766-w.

Downloads

Published

2025-06-30

Issue

Section

Review Papers

How to Cite

1.
Indications and timing for genetic testing in ovarian cancer. JMS [Internet]. 2025 Jun. 30 [cited 2025 Aug. 17];94(2):e1274. Available from: https://horkruks.ump.edu.pl/index.php/JMS/article/view/1274