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Data distribution analysis – 
a preliminary approach to quantitative 
data in biomedical research
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ABSTRACT

Statistical analysis is an integral part of medical research. It helps transform raw data into meaningful 
insights, supports hypothesis testing, optimises study design, assesses risk and prognosis, and facilitates 
evidence-based decision-making. The statistical analysis increases research fi ndings' reliability, validity 
and generalisability, ultimately advancing medical knowledge and improving patient care. Without it, mean-
ingful analysis of the data collected would be impossible. The conclusions drawn would be unsubstantiated 
and misleading.
 Many health professionals are unfamiliar with statistical analysis and its basic concepts. The analysis of 
clinical data is an integral part of medical research. Identifying the data type (continuous, quasi-continuous 
or discrete) and detecting outliers are the fi rst and most important steps. When analysing the data distribu-
tion for normality, graphical and numerical methods are recommended. Depending on the type of data dis-
tribution, appropriate non-parametric or parametric tests can be used for further analysis. Data that are not 
normally distributed can be normalised using various mathematical methods (e.g., square root or logarithm) 
and analysed using parametric tests in the next steps.
 This review provides essential explanations of these concepts without using complex mathematical or 
statistical equations but with several graphical examples of various statistical terms.

Introduction

Statistical analysis is essential in medical 
research. It transforms raw data into meaningful 

insights, supports hypothesis testing, optimises 
study design, assesses risk and prognosis, and 
facilitates evidence-based decision-making. The 
statistical analysis increases research fi ndings' 
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reliability, validity and generalisability, ultimate-
ly advancing medical knowledge and improving 
patient care. Without it, meaningful analysis of 
the data collected would be impossible. The con-
clusions drawn would be unsubstantiated and 
misleading.

Many medical professionals are unfamiliar 
with statistical analysis and its basic concepts, 
starting with the types of quantitative data, such 
as continuous and discrete data, or their distri-
bution analysis. This review provides essential 
explanations of these concepts without using 
complex mathematical or statistical equations 
but with several graphical examples of various 
statistical terms.

Data types

Different types of data are collected in biomedi-
cal research. The most common are quantitative, 
qualitative and descriptive (textual). 

Quantitative or numerical data can take any 
numerical value and are represented as numbers. 
Some values are less than, equal to, or greater 
than others, for example, age 15, 21, and 35 years; 
length 22, 19, and 10 cm; area 2, 2, and 2.5 cm2; 
weight 78, 82, and 95.3 kg; power 224, 248, and 
301 watts; or a ratio of two variables such as 
serum triglycerides to HDL concentrations of 1.2, 
3.5, and 4.9. Quantitative data may or may not 
have units.

Qualitative data are usually non-numerical 
and are described by labels or qualitative charac-
teristics. Many qualitative variables can only be 
categorised, labelled, but never ranked, ordered 
or graded, such as gender (male, female), eth-
nicity (e.g. African American, European, Latin 
American) or colour (red, yellow, green, black). 
For example, red is not bigger or smaller than 
blue. However, other qualitative observations 
can be ranked in a natural order based on quali-
tative analysis. However, the distances between 
the categories are unknown. One object may be 
larger than another. One person may be nicer 
than another. One heart failure patient in New 
York Heart Association (NYHA) functional class 2 
has less severe symptoms than another in NYHA 
3. Some examples of ordinal data for which rela-
tive, subjective or arbitrary scales should be used 
are warm, warmer and warmest, or primary, high 

school, college, graduate and postgraduate for 
educational level. Similarly, the effect of pharma-
cotherapy on a patient's symptoms can be sub-
jectively rated as no change, slightly better, really 
better compared to previous treatment, or best of 
all medications taken before. For qualitative data, 
signs (+, ++, +++ or -, --, ---) and letter codes (A, 
B, C) are often used instead of longer words. As 
some statistical software does not accept text, 
numbers are used as codes in such cases. The 
numerical codes entered should be treated as 
nominal (preferably) or ordinal (if they can be 
ranked) data. Otherwise, numbers replacing 
text may be treated as continuous and become 
a source of error.

Descriptive data are typically textual and con-
sist of words, abbreviations, phrases and sen-
tences, e.g. medical notes, observations, test 
summaries, open-text comments and opinions. 
Specialised analysis tools are required to quanti-
fy and/or describe such data. These tools can be 
natural language processing techniques, Qualita-
tive Text Analysis (QCA) or other methods such 
as the Generative Pre-trained Transformer (GPT), 
which is part of the family of Large Language 
Models (LLMs) analysed by artifi cial intelligence 
(ChatGPT).

Regardless of the type, all data are collected 
in databases. Data can be stored in spreadsheets 
or dedicated databases. Spreadsheets provide 
a tabular format with rows and columns to store 
and manage data. Most people fi nd them easier 
to use for entering, manipulating and analysing 
data effectively, performing calculations, apply-
ing formulas, formatting and exporting to exter-
nal statistical software. Unfortunately, spread-
sheets have limitations compared to dedicated 
database management systems for large and 
more complex data sets. Dedicated and specially 
designed database management systems such 
as MySQL, Oracle, and Microsoft SQL Server, 
the Redcap Project are better solutions for such 
tasks. They offer features such as data indexing, 
data relationships, integrity constraints, normali-
sation and transaction management.

Regardless of the form of the database, vari-
ous characteristics or parameters (variables) 
describing people, objects, animals, samples, 
etc., are stored and prepared for further statisti-
cal analysis. 
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This review focuses on quantitative data. 
We will explain the most common terms, how to 
analyse and interpret their distribution and pres-
ent graphical examples.

Basic defi nitions

Several basic terms related to the types of quan-
titative data, their characterisation and the anal-
ysis of the distribution of data are presented in 
Table 1.

Types of quantitative data

Continuous data can have infi nite possible val-
ues within a given range, including fractions, 
decimals or integers. Between any two values, 
there is always another. The reporting of each 
value depends on the precision of the measure-
ment, which may determine whether the data 
are continuous. For example, a precision of 1 in 
100 is considered continuous data, as opposed 
to 1 in 10, which makes the data quasi-continu-
ous (almost continuous) or sometimes discrete 
because it appears to be stepped.

Medical examples of continuous data include 
cardiac cycle duration (910.9, 920.0, 920.1 ms), 
age (31.85, 31.86, 31.87 years), body temperature 
(36.58, 36.59, 36.60 oC), body mass index (BMI) 
(27.27, 27.28, 27.29 kg/m2), blood glucose con-
centration (11.64, 11.65, 11.66 mmol/L). 

Quasi-continuous data represent values that 
have been rounded or grouped into intervals. 
Using the same examples above, the rounded 
values will be 920 ms for the cardiac cycle, 32 
years for age, 36.6°C for body temperature, 27.3 
kg/m2 for body mass index and 11.7 mmol/L for 
blood glucose concentration. Some values in 
clinical practice are always rounded and given in 
whole numbers, such as heart rate – 63, 86, 105 
beats/minute, blood pressure – 122/78, 124/84, 
152/95 mmHg, body mass – 56, 78, 113 kg, etc. 
Quasi-continuous data, however, should be con-
sidered continuous for statistical analysis.

Discrete data can only take specifi c values 
and have no value between two adjacent val-
ues. Typical examples are the number of preg-
nancies (there cannot be 3.35 pregnancies) and 
the number of hospitalisations (it is impossible 

to be hospitalised 5.173 times). The main differ-
ence between continuous and discrete data is 
that continuous data can take any value within 
a specifi c range, whereas discrete data can take 
only certain values. Continuous data are mea-
sured and expressed more accurately than dis-
crete data.

Mathematical manipulation with continuous 
and discrete data is possible; e.g., measuring 
height and weight makes it easy to calculate BMI. 
Similarly, converting continuous or discrete data 
into categorical data is also straightforward. All 
such data belong to an interval or ratio scale.

Based on BMI and known criteria, a person 
is categorised as underweight, normal weight, 
overweight or obese category 1, 2 or 3. However, 
this is a one-way process. Retrieving backward 
information on BMI from one of these categories 
is impossible (see Figure 1).

Outliers

An outlier is a value signifi cantly different from 
other values in the dataset. Measurement inaccu-
racies, data entry errors, natural variation, or truly 
unusual observations are the leading causes of 

Figure 1. A sample of different original body mass indices de-
rived from height and mass. These data are transformed from 
continuous through quasi-continuous, discrete to ordinal. Each 
further step involves a loss of accuracy. Transforming data to 
a less precise category often involves grouping observations 
into predefi ned ranges or bins. This results in a loss of infor-
mation and granularity. Subtle differences between individu-
als may be obscured, making it harder to see fi ne patterns or 
relationships in the data or showing weak or no associations 
between variables. The reverse process of recovering the origi-
nal information (continuous data) from all the transformed data 
is mathematically unfeasible.
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Table 1. Basic terms related to the types of quantitative data, characterisation and analysis of distribution.

Term Defi nition
Descriptive statistics Analyses designed to describe and summarise the data set.
Continuous data Data that can take on any value within a range, e.g., body temperature, serum sodium concentration, 

white blood cells count, and time.
Quasi-continuous data Data nearly continuous or continuous data that were rounded for some purposes, e.g. age in years, body 

weight in kilograms, blood pressure in mmHg, heart rate in beats/minute.
Discrete data Data that can only take on specifi c values, e.g., the number of children in a family, the number of fi ngers 

and toes, and the number of epilepsy attacks.
Distribution It displays the rate or probability of different values occurring in a given data set.
Histogram Graphical representation of the distribution of numerical data binned into neighbouring bars. 
Density plot Graphical visualisation of the distribution of continuous data as a smooth curve with continuous data 

representing the data distribution.
Q-Q plot Short term for the quantile-quantile plot. Graphical visualisation of assessing whether data follow 

a normal distribution.
Outlier An observation or data point with an extreme value that lies far away from most data points. 
Minimum The smallest value in a dataset.  
Maximum The largest value in a dataset.  
Percentile A measure used to indicate the value below which a given percentage of observations in a group of 

observations falls. For example, the 5th percentile indicates that 5% of the values in a dataset are less 
than or equal to that value.

Lower quartile (Q1) 25th percentile, a value below or equal to which 25% of the values in the dataset are located.
Upper quartile (Q3) 75th percentile, a value below or equal to which 75% of the values in the dataset are located.
Interquartile range (IQR) The range between a dataset's fi rst quartile (25th percentile) and the third quartile (75th percentile). 
Range Distance between the maximum and minimum values of a data set.
Central Tendency Various measures indicating the middle or centre of a distribution.
Median Middle value (50th percentile) in a dataset ranked from minimum to maximum values.
Mode The most common value in a dataset.
Mean The average value of a dataset calculated by adding up all the values and dividing by the number of values.
Trimmed mean A statistical measure calculated by removing a certain percentage of the largest and smallest values in 

a dataset and then calculating the mean of the remaining values. It is done to reduce the impact of 
outliers on the mean, for instance, removing 5% of the measurements reduces 2.5% of the largest and 
2.5% of the smallest values. 

Normal distribution A bell-shaped curve represents the distribution of many biological phenomena and data.  
Skewness A measure of how asymmetrical a distribution is. 
Kurtosis A measure of how peaked or flat a distribution is compared to a normal distribution.
Deviation The distance between the mean and a particular data point in a given distribution.
Standard deviation (SD) A measure of how much the data deviates from the mean.
Variance A measure of how spread out the data is from the mean.
Coeffi cient of variation 
(CV)

A relative and unitless measure of the dispersion of data points around the mean. It allows comparing 
variability between disparate groups and characteristics. A smaller CV indicates that the data points are 
more tightly clustered around the mean, while a larger coeffi cient of variation indicates that the data 
points are more spread out.

Standard error of the 
mean (SEM)

A measure of how much the sample mean is likely to differ from the true population mean to assess the 
precision of the sample mean. It is derived by dividing the standard deviation by the root of the sample size.

Confi dence Interval (CI) A range of values likely to contain the true population parameter with a certain confi dence level. CI is 
usually expressed as a percentage, such as 95% or 99%

Z-score A statistical measure that determines the relative distance of a given value from the mean, using 
standard deviation as the measure of that distance. In other words, the Z-score represents the number 
of standard deviations a data point is from the mean of the distribution. It is calculated as the difference 
between the given value and the mean divided by the standard deviation. By using the Z-score, data 
points from different distributions can be standardised and compared on the same scale. A positive 
z-score indicates that the data point is above the mean, while a negative z-score indicates that it is 
below the mean. A Z-score of 0 means that the data point is exactly at the mean.
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these extreme values. Outliers can signifi cantly 
impact statistical analyses and distort the results 
or conclusions drawn from the data. They can 
affect some measures of central tendency, such 
as the mean, and estimates of variability, such as 
the standard deviation. Outliers can violate sta-
tistical methods assuming normal data distribu-
tion. In contrast, non-parametric methods and 
descriptors such as median, interquartile range 
(IQR) or mode are insensitive to outliers. 

Identifying outliers is essential to ensure the 
integrity and validity of data analysis. It involves 
examining the data distribution and looking for 
values unusually far from most observations. 
Outliers can be detected using various methods, 
including graphical techniques (e.g. box plots, 
scatter plots, violin plots), statistical tests and 
computational algorithms. The decision to deal 
with outliers depends on the specifi c research 
context, the nature of the outliers and the analy-
sis objectives. In research, it is essential to doc-
ument all procedures for identifying and deal-
ing with outliers. This ensures transparency and 
reproducibility.

Types of data distribution

The normal distribution is very common in bio-
medical research. It is also known as the Gauss-
ian distribution or the bell curve. The normal dis-
tribution is symmetrical about the mean and has 
a characteristic bell shape. Many biological and 
physical phenomena follow a normal distribution. 
For example, the heights of adult humans follow 
a normal distribution.

Skewed distributions are another type of dis-
tribution. They occur when the data do not have 
symmetrical distribution around the mean. There 
are two types of skewed distribution: positively 
skewed (to the right) and negatively skewed (to 
the left). In a positively skewed distribution, the 
curve’s tail is longer on the right than on the left. 
In a negatively skewed distribution, the curve’s 
tail is longer on the left than on the right. A com-
mon example of a positively skewed distribu-
tion is income data, where many people have low 
incomes, and a few have very high incomes. The 
age distribution of patients admitted to a hospi-
tal with neonatal and paediatric wards is different 
and skewed to the right compared to another hos-

pital where only adults, especially older people, 
are admitted. The mean serum creatine concen-
tration is higher, and the distribution is skewed to 
the left in nephrology patients compared to gen-
eral medical ward patients.

Bimodal distributions occur when there are 
two peaks in the data. This happens when two 
different subgroups in the same data differ and 
emerge. For example, in a combined data set, the 
average muscle mass for men and women dif-
fers. It naturally separates – such data distribu-
tions show two peaks.

Multimodal distributions occur when there 
are more than two peaks in the data. They occur 
when more than two data groups have differ-
ent characteristics. For example, the distribution 
of the height of men, women and children in the 
same database shows three peaks in the data. 
Often this represents unbalanced data collection, 
such as more young people or more women than 
men.

Distribution analysis

Examining distributions is an integral part of data 
analysis. It involves comparing the character-
istics of two or more distributions to determine 
whether they are different or similar. Several 
graphical and numerical methods can be used to 
compare distributions.

Graphical data visualisation used to analyse data 
distributions
In medical research, data visualisation is invalu-
able for analysing all forms of quantitative data. 
Various data features can be identifi ed using 
appropriate visualisations, such as central ten-
dency, dispersion, minimum and maximum val-
ues, outliers, data distribution and shape. These 
visualisations make interpreting data, commu-
nicating fi ndings, and drawing conclusions eas-
ier. Presenting complex data in visual formats 
simplifi es identifying differences, associations, 
trends and patterns. 
1. A histogram is used to estimate the probabili-

ty distribution of all forms of quantitative data, 
preferably continuous and quasi-continuous. 
Although they are not best suited to discrete 
data, histograms can provide insight into the 
number of cases with certain discrete values. 
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  To construct a histogram, the data values 
are fi rst binned into ranges, i.e. the whole range 
is divided into a series of narrower intervals. 
The number of values falling within each bin 
is then counted (see Figure 2). The bins rep-
resent successive, adjacent, non-overlapping 
intervals of a variable and are often (but not 
necessarily) of equal size. Histograms show 
the empirical shape of the distribution, central 
tendency (mean, median, mode), dispersion 
(variance, standard deviation) and outliers.

2. A density plot also shows the distribution of 
continuous data, similar to a histogram. How-
ever, the density plot uses a smooth theoreti-
cal curve instead of bars to represent the dis-
tribution. While they may not be the perfect 
way to visualise discrete data, density plots 
can give some insight into their distribution. 

  The smoothness of density plots refers to 
the degree of smoothing applied to the den-
sity curve drawn over the real data. With low 
smoothness, usually, more than one peak is 

visible. Higher smoothing degrees provide 
only one peak and may resemble a normal or 
skewed distribution curve (see Figure 3). 

  These plots are particularly useful for iden-
tifying the shape of the distribution, including 
whether it is symmetric, skewed or bimodal. 
They also provide information about the cen-
tral tendency, dispersion and outliers present 
in the data. 

  Using a theoretical plot fi tted to real data 
has its consequences. Very often, such a plot 
crosses the real data at the lower and upper 
limits, and sometimes the density plots show 
values that are not possible. There are no 
negative values for concentration, length 
or weight. A height of 300 cm is humanly 
impossible. These are artifi cial effects of the 
smoothing algorithms, which can stretch the 
estimated density curve to values that do not 
make sense for a particular dataset.

  To deal with such a problem, a density plot 
can be truncated at zero to avoid negative val-

Figure 2. Examples of different histograms with systolic blood pressure (SBP) results in the upper panels and body mass index (BMI) 
in the lower panels. The fi rst histogram with SBP shows a normal data distribution. The next two examples present data skewed to the 
left and right. The two BMI examples at the bottom display distributions with negative kurtosis (flattened shape) and positive kurtosis 
(narrower and higher shape).
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ues – all negative values are set to zero. The 
upper range of these values should be defi ned 
for extremely high values.

3. A box plot or box-and-whisker plot shows the 
distribution of all types of quantitative data. 
It summarises vital statistical characteristics 

and highlights potential outliers in the data 
set (see Figure 4). 

  The following statistical measures are typ-
ically used to construct a box plot. – Median, 
represented by a horizontal line inside a box, 
dividing it in half. – Quartiles, i.e. the lower 

Figure 3. For this fi gure, the same data were used as in Figure 2. The histograms are replaced by density plots showing the data with 
a normal distribution, skewed to the right and the left, and then with positive and negative kurtosis (leptokurtic and platykurtic distri-
bution). The mean and median are usually overlapping or very close to each other for the normal distribution. In contrast, for skewed 
data, the mean and median are separated. Negative or positive kurtosis does not affect the position of the mean and median.

Figure 4. A general explanation of the box-whisker plot. The median represents the cen-
tral tendency, while minima, maxima, outliers, whiskers and quartiles are different ways of 
expressing the dispersion of the data. The unequal distances between the median and Q1 
and Q3, or the top and bottom whiskers, reflect whether the data are skewed or not. In this 
example, the data are right-skewed.
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quartile (Q1) for the 25th percentile and the 
upper quartile (Q3) for the 75th percentile. The 
distance between Q1 and Q3 helps identify the 
data’s spread. In the box plot, Q1 and Q3 are 
represented by the lower and upper boundar-
ies of the box, respectively. This distance is 
called the interquartile range (IQR) and covers 
the middle half (50%) of all values in the data 
set. – Whiskers that extend from the box indi-
cate the dataset’s range. The lower whisker 
typically represents the minimum non-outly-
ing value within 1.5 times the IQR below Q1, 
while the upper whisker represents the maxi-
mum non-outlying value within 1.5 times the 
IQR above Q3. Values outside the whiskers 
are considered outliers and are plotted indi-
vidually. – Outliers, shown as individual data 
points or asterisks, are outside the whiskers 
(more on outliers in a separate section). They 
are considered to be potential anomalies in 
the data set.

  Box plots are a flexible way of presenting 
data and may display the mean, SD, SEM or 
95% CI. In this situation, the statistical anal-
ysis uses the Z-score to identify outliers or 
unusual values.

4. A violin plot combines features of a box plot 
and a kernel density plot to provide a compre-
hensive representation of the shape, central 
tendency, dispersion and multimodality of the 
data. 

  The width of the violin at each point rep-
resents the density of the data at that value. 

In contrast, the body of the violin plot shows 
the density distribution, indicating the relative 
concentration of data at different values along 
the x-axis. Wider sections indicate high-
er density, while narrower sections indicate 
lower density (see Figure 5). Similarly to the 
box plot, the violin plot can include lines rep-
resenting the data’s median, Q1 and Q3 (IQR) 
and the outliers. Unlike box plots, violin plots 
show the shape and distribution of the data, 
indicating whether it is symmetrical, skewed, 
unimodal, bimodal or multimodal, with mul-
tiple peaks or modes representing different 
subgroups or patterns within the data. 

5. A scatter plot displays individual data points 
as dots along a number line or axis. It shows 
the data’s distribution and helps identify pat-
terns or outliers.

  To create a scatter plot, each data point is 
plotted as a dot at its corresponding value on 
the number line. The dots are stacked verti-
cally for multiple data points with the same 
value (non-unique or tied values). This stack-
ing shows the frequency or density of data at 
each unique value (see Figure 6).

  Unlike other plots that aggregate data, 
scatter plots show each data point. This 
allows the entire raw data set to be observed 
and specifi c values or patterns of interest to 
be identifi ed. This makes it easy to follow the 
spread and concentration of data, with gaps 
or clusters of dots indicating areas of high or 
low density, uneven data distribution. Scatter 

Figure 5. Identical systolic blood pressure (SBP) values are presented in three violin plots 
with different degrees of smoothness (low, medium and high). Low smoothness gives more 
information about the number of local peaks. With a more aggressive high level of smooth-
ness, the violin is unimodal. Medians, Q1, Q3 or outliers can be added to all charts. Violin 
plots help to see if the data is skewed – the plots shown are right-skewed.
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plots can show measures of central tendency, 
such as the mean or median, SD or Q1 and Q3, 
and outliers. 

6. A line plot presents quantitative data by con-
necting successive points that change over 
time. Many measurements are taken repeat-
edly to study their changes, e.g. blood glucose 
concentration before and after meals, blood 
pressure each morning and evening, and body 
weight during a weight loss programme. They 
show trends, patterns, and fluctuations over 
the observed period. The line plot is an exam-
ple of a time series plot.

  To construct a line plot, data points are 
plotted on the y-axis, representing the stud-
ied variable against time. Connected data with 
straight lines highlight the changes and trends 
over the observed period (see Figure 7). 

  By checking line plots, it is possible to 
reveal overall trends or patterns in the data, 
and the slope provides information about 
the direction and magnitude of the change, 
whether it is increasing, decreasing, or staying 
relatively constant over time. These plots help 
identify seasonal or periodic patterns, recur-
ring fluctuations or cycles. As outliers deviate 

Figure 6. Systolic blood pressure (SBP) values presented as discrete data (left panel) and 
next (middle panel) as continuous data. Finally, a scatter plot is combined with a violin plot 
(right panel). In all cases, the data are randomly distributed around the centre of the scatter-
plot, but the shape of the scatterplot follows the data distribution. All forms of scatterplot can 
be supplemented with additional graphs, such as violin or box-whiskers plots, or measures 
of central tendency (Median, Mode, Mean) and dispersion (SD, Q1, Q3). Skewness can also be 
visualised using scatter plots.

Figure 7. Two samples of line plots of synchronised beat-to-beat recordings of the duration 
of each cardiac cycle (RR intervals from ECG) and systolic blood pressure (SBP) from the 
fi nger arterial pressure waveform from a 25-year-old healthy woman in a supine position. 
For SBP (the upper panel), the median and Q1 and Q3 values are shown, while the mean and 
+/- SD values are displayed for the RR intervals. 
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signifi cantly from the general trend, it is easy 
to spot them. Line plots can help make pre-
dictions or forecasts based on historical data. 
The line plots can be accompanied by shaded 
areas or error bars around the lines represent-
ing, for instance, the 95% confi dence intervals 
and showing the dispersion of values around 
the trend lines.

7. A Q-Q (quantile-quantile) plot is a graphical 
tool that examines whether a data set follows 
a particular theoretical distribution, such as 
a normal distribution. It compares the quan-
tiles of the observed data with the quantiles of 
the expected theoretical distribution.

  To construct a Q-Q plot, the values of the 
observed data set are fi rst sorted in ascend-
ing order. Next, the corresponding quantiles 
of the expected distribution are calculated. 
These quantiles represent the values that 
would be expected if the observed data fol-
lowed the specifi ed distribution perfectly. The 
Q-Q plot then displays the observed quantiles 
on the x-axis and the expected quantiles on 

the y-axis. Each data point represents a pair 
of observed and expected quantiles (see Fig-
ure 8). 

  If the observed data closely follow the 
expected distribution, the points on the plot 
will fall approximately on a straight identity 
line that follows the function x = y. This identity 
line assumes that the estimated points (on the 
y-axis) are the same as the observed points 
(on the x-axis). Departures from a straight line 
indicate deviations from the expected distri-
bution. 

  These plots help to assess the normality 
assumption of a data set. It suggests that the 
data follows a normal distribution if the data 
points on the plot closely follow the identity 
line. However, if the points diverge from the 
line, this indicates deviations from normality, 
such as skewness or heavy tails. Q-Q plots 
can also be used to compare two sets of data. 
Plotting the quantiles of one data set against 
the quantiles of another makes it easy to see if 
the two data sets have similar distributions.

Figure 8. An example of a quantile-quantile (Q-Q) plot comparing quantiles representing the obser-
vations and their distribution with quantiles corresponding to the theoretical normal distribution. The 
points form a line along the identity line (y = x) if both sets of quantiles come from the same distribution. 
Gaussian and other distributions such as uniform, exponential or Pareto can be compared using these 
plots. Q-Q plots are more diagnostic than comparing sample histograms, density plots, scatter plots, 
box-whisker plots or violin plots. With Q-Q plots, skewness and kurtosis are immediately visible. They are 
easy to examine. The multimodality of distributions can also be found. See an example in Figure 9. 
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  Q-Q plots do not show measures of central 
tendency, but it is easier to see how the data 
deviate from normal distributions, whether 
skewed or have kurtosis.

Standard numerical tests 
for normality testing

Many tests are used in medical research to anal-
yse data distribution. The most common are:
1. Kolmogorov-Smirnov test. (1) This test deter-

mines whether a sample comes from a normal 
distribution. It compares the empirical data 
distribution with the cumulative distribution 
function of a theoretical normal distribution. 
Advantages: It is sensitive to differences in 
both location and shape between the sample 
and the normal distribution. Disadvantages: 
It is less powerful than other tests when the 
sample size is small.

2. Shapiro-Wilk test. (2) This test determines 
whether sample data come from a normal 
distribution based on the correlation between 
the observed data and the expected normal 
values. The test was originally proposed by 
Shapiro for small sample sizes. It is now used 
for data sets ranging from 3 to 5,000 samples. 
(3,4) Advantages: It is more potent than other 
tests when the sample size is small. Disad-
vantages: It is less powerful than other tests 
when the sample size is large.

3. Shapiro-Francia test. (5) This is similar but 
simpler than the Shapiro-Wilk test but has bet-
ter power for small samples. It measures the 
deviation of the sample data from normality by 
comparing the sample distribution to a normal 
distribution with the same mean and variance. 
Advantages: It is more potent than other nor-
mality tests when the sample size is small and 
less sensitive to outliers than other normality 
tests. Apart from being less popular (not well 
known), there are no methodological disad-
vantages when used with small data sets.

4. D'Agostino-Pearson (D'Agostino's K-squared) 
test. (6,7) This test determines whether 
a sample comes from a normal distribution. It 
is based on the skewness and kurtosis of the 
sample as measures of deviation from nor-
mality. The D'Agostino-Pearson test provides 
a formal statistical test to support or challenge 

the visual assessment made, for example, by 
Q-Q plots. Both methods provide a more com-
plete analysis of normality. Advantages. It is 
a powerful test of normality. Disadvantages: It 
may not be sensitive to forms of non-normal-
ity other than skewness and kurtosis, such as 
multi-modality or heavy tails.

5. Anderson-Darling test. (8) This paramet-
ric test uses the sample data to estimate the 
normal distribution parameters. The test sta-
tistic is based on the difference between the 
observed and expected cumulative distribu-
tion functions. Advantages: It is more power-
ful than other tests when the sample size is 
large. Disadvantages: It is less powerful than 
other tests when the sample size is small.

6. Cramer-von Mises test. (9) Similar to the 
Anderson-Darling test, but gives more weight 
to differences in the tails of the distributions. 
Advantages: It is a powerful test of normality 
for larger sample sizes. Disadvantages: It is 
sensitive to sample size. 

7. Jarque-Bera test. (10) This test determines 
whether a sample comes from a normal dis-
tribution. It uses skewness and kurtosis as 
measures of deviation from normality. Advan-
tages: It complements graphical methods 
such as Q-Q plots. Disadvantages: Its ability 
to identify certain types of non-normal distri-
bution is limited as it primarily looks for devia-
tions from the normal pattern based on skew-
ness and kurtosis.

8. Lilliefors test (Kolmogorov-Smirnov-Lilliefors 
test). (11,12) It is an extension of the Kolmogo-
rov-Smirnov test but adjusted when the mean 
and variance of the data are also estimated. 
Advantages: It has better power than the orig-
inal Kolmogorov-Smirnov test to detect devi-
ations from normality. This is especially true 
for moderate sample sizes. Disadvantages: It 
can be overly conservative and not appropri-
ate for small samples.

9. Lobato-Velasco test. (13) This test measures 
skewness and kurtosis and their correlation 
coeffi cients for observations. While assess-
ing the normality of the data distribution, 
the Lobato-Velasco test provides consistent 
results for data that are correlated over time. 
Advantages: This test considers the specifi ci-
ty of dependent data and provides consistent 
results for data that are correlated over time. 
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Disadvantages: It is sensitive to deviations 
from the assumption of stationarity.
For smaller sample sizes < 50, it is advisable 

to employ the Shapiro-Wilk test or Shapiro-Fran-
cia test for their higher power in detecting devi-
ations from normality in such cases. (9,14) If 
skewness or kurtosis are more important, the 
D'Agostino-Pearson or Jarque-Bera test and oth-
er tests focusing more on skewness and kurtosis 
work better. For sample sized > 50, other meth-
ods, particularly graphical like Q-Q plots, histo-
grams, density plots, box-and-whiskers and oth-
er tests of normality can be used. 

For very large samples, most normality tests 
are too sensitive and will detect even small devi-

ations from normality. (15) It is advisable to use 
graphical tools to avoid prematurely labelling 
data as non-normal for small deviations that are 
unlikely to affect the interpretation of the data. 
These methods visualise the true distribution. 
They help to identify multimodality, asymmetry 
or excessive variance.

Multimodality is one of several reasons for 
the lack of normality in the distribution. In a mul-
timodal distribution, clusters or subgroups of 
values are separated from each other. Statisti-
cal analysis and inference should take account 
of such clustered values and, where appropriate, 
apply specifi c tests for cluster analysis or mul-
timodal modelling. These may facilitate under-

Table 2. Data distribution evaluation based on measures/coeffi cients, statistical tests and graphs.

Analysis type Result of analysis Result interpretation
Normality distribution tests P-value < 0.05 Not a normal distribution
Skewness assessment

Skewness coeffi cient
Positive (especially greater than 2*) Right-skewed distribution
Negative (especially less than -2*) Left-skewed distribution

Tests for assessing skewness P-value < 0.05 Skewed distribution

Histogram and density plots
Long right tail Right-skewed distribution
Long left tail Left-skewed distribution

Box-whiskers, violin and dot 
plots

Extended top of the chart (an upper whisker) Right-skewed distribution
Extended lower part of the graph (a lower whisker) Left-skewed distribution

Q-Q plot

Right and left tails signifi cantly departing above the 
identity line Right-skewed distribution

Right and left tails signifi cantly departing above the 
identity line Left-skewed distribution

Mean versus Median
Mean distinctively above median Right-skewed distribution
Mean distinctively below median Left-skewed distribution

Kurtosis assessment

Kurtosis coeffi cient
Positive (especially greater than 4*) Sample distribution is narrower than 

a normal distribution 

Negative (specifi cally less than -4*) Sample distribution is flatter and wider 
than a normal distribution 

Tests for assessing kurtosis P-value < 0.05 Kurtosis atypical for normal distribution

Q-Q plot
Left tail above and right tail below the identity line The distribution is more flattened than 

a normal distribution 
Left tail well below and right tail well above the fi t 
line

Distribution is narrower than a normal 
distribution 

Histograms and density plots ”Heavy” tails The distribution is more flattened than 
a normal distribution 

Multimodality assessment

Histogram and density plot Distinct clusters of bars (density) of similar height 
representing separate groups

Multimodality occursQ-Q plot Multiple groups of points deviating in different 
directions from the fi t line

 Violin and Point plot
Occurring in alternating wide and narrow shapes, 
separated clusters of multiple points represent 
different value groups with different centers

* Limits proposed for the district of signifi cant deviation from normality (14).
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standing of differences between two or more 
subgroups.

When the statistical mean is the primary mea-
sure describing the data, it is important to ensure 
that the data are normally distributed and not 
skewed. This is because the central limit theorem 
states that the sample mean of large samples 
approaches the true population mean. In other 
words, the means of such samples satisfy the 
normality of the distribution. However, this theo-
rem does not defi ne whether the data have a nor-
mal distribution. The theorem does not exempt 
the researcher from investigating how the data 
are distributed. 

Figure 10 shows over 20000 measurements 
of 1-minute total heart rate variability (SDNN) 
for sinus rhythm and for atrial fi brillation. In 
both cases, statistical tests detected signifi cant 
(p-value < 0.0001) deviations from the normal-
ity of the distribution. However, only one graph 
shows data that are signifi cantly out of normal 
distribution. For sinus rhythm, this is due to the 
high skewness of the data (mean 35.5 ms and 
median 53.8 ms). For atrial fi brillation, the distri-
bution is less skewed (mean 137.5 ms and median 
136.1 ms). Only on the left side is the proportion of 
observed values above the expected value slight-
ly higher. The atrial fi brillation data can therefore 
be assumed to have a normal distribution. 

With large data sets, the normality tests have 
too much power and may detect even minimal 
deviations from normality as signifi cant. In such 
cases, graphical analysis is always essential and 
may be decisive.

However, only one graph shows data that are 
signifi cantly out of normal distribution. For sinus 
rhythm, this is due to the high skewness of the 
data (mean 35.5 ms and median 53.8 ms). For 
atrial fi brillation, the distribution is less skewed 
(mean 137.5 ms and median 136.1 ms). Only on 
the left side is the proportion of observed val-
ues above the expected value slightly higher. The 
atrial fi brillation data can therefore be assumed 
to have a normal distribution. 

Discussion

Assessing the normality of a distribution is the 
fi rst step in many statistical analyses. It should 
always start with a visual assessment, for exam-
ple, using histograms or density plots. Unfortu-
nately, due to the required time and uncertainty of 
interpreting such plots, statistical tests become 
the only tool for testing the normality of data dis-
tributions. Normality tests are central to statisti-
cal analysis. However, they should complement, 
not replace, graphical assessment of normality.

Figure 9. An example of Q-Q plots, histograms and density plots (left panel) with the results of height measurements 
collected in a group of healthy children aged between 5 and 18 years. Four distinct peaks of lumped height values (local 
maxima) appear. An additional analysis (right panel) examining the height distribution against age explains that the four 
local maxima correspond to four different age groups of the children studied. Categorical, continuous and discrete data can 
all form multimodal distributions and can be analysed in this way.
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Is normality testing necessary?
Normality tests aim to determine whether a data 
set is well-modelled by a normal distribution. 
A single normality test is usually suffi cient. If the 
results are uncertain or borderline, other tests can 
be used to confi rm or reject the normality of the 
distribution of the data being analysed. In such 
tests, the null hypothesis is that the distribution 
is normal, confi rmed if the p-value exceeds 0.05. 
If p <0.05, normality is rejected.

A normal distribution is symmetric, so data 
conforming to this distribution can be sum-
marised with mean and SD and later analysed 
with parametric tests. True normality is consid-
ered a myth because real data, including medical 
data, usually deviate from the ideal normal dis-

tribution to some extent. For skewed non-normal 
data, mean and SD may be misleading and con-
fusing because of potential over- or underesti-
mation. The median, Q1 and Q3 are required for 
data with a non-Gaussian distribution. It is also 
convenient for readers to see both the mean and 
the median to decide whether the distribution is 
normal.

To date, statisticians have not reached a con-
sensus on a single best test for assessing the 
normality of distribution for all possible data and 
situations. Normality tests with small group sizes 
often confi rm a normal distribution, while tests 
with large groups tend to reject this assumption. 
Circumstances in which all tests agree in judging 
the normal distribution are straightforward. The 

Figure 10. Q-Q plots, box and whisker plots, histograms and normal density plots showing analysis of SDNN calculated for 1 minute 
beat-to-beat values of RR interval duration. Left panel shows plots for normal sinus rhythm, right for AF. Each panel summarises the 
fi nding for more than 20,000 separate 1-minute fi les of RR intervals. For sinus rhythm, the data distribution is not normal, which can 
be seen in the Q-Q plot, box-whisker plot – greater distance between the median and Q3 and the right whisker, and a clear clustering of 
outliers outside this whisker. The histogram is also highly skewed. The distribution analysis of SDNN for AF appears to be Gaussian.
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problem arises when different tests give differ-
ent assessments of the distribution. What do you 
do when the statistical tests disagree with your 
assessment? This is another reason to return to 
graphical methods for assessing normal distri-
bution. It is worth looking at the presence of out-
liers and whether errors are hidden among them, 
using additional graphical techniques such as 
Q-Q plots. 

Assessing the distribution’s normality should 
help select the best methods for further analysis. 
Choosing the right normality test can signifi cantly 
impact the reliability and validity of the statistical 
analysis. Normality tests help determine whether 
parametric tests are appropriate for further sta-
tistical analysis. Parametric tests, such as t-test 
and ANOVA for comparisons or Pearson's corre-
lation test and regression models based on least 
squares estimation, rely heavily on the normality 
assumption. Sample size estimation for design 
studies would not be possible without proper test 
selection. 

Determining whether the data show a seri-
ous departure from normality is crucial. If there 
is any doubt about the normality of the data dis-
tribution, it is better to use non-parametric tests 
in further analyses. If the data are normally dis-
tributed in one subgroup but not in another, it is 
recommended that non-parametric tests be used 
for the subgroup that does not have normally dis-
tributed data. 

Nonparametric tests do not assume that the 
data are normally distributed. Non-paramet-
ric methods should be used in further analy-
ses for data that are not normally distributed. 
The simplest examples are the Mann-Whitney 
or Kruskal-Wallis tests for comparisons or the 
Spearman correlation test. They are more resis-
tant to violations of this assumption. There are 
also robust statistical methods used in medical 
research to analyse data that may have outliers 
or other anomalies and to deal with such prob-
lems. (16) However, some statistical power is lost 
by using non-parametric tests rather than para-
metric tests. Alternatively, the data can be nor-
malised by transforming them with some math-
ematical functions (e.g. logarithm, square root). 
Another solution is to treat the results as explor-
atory rather than conclusive. 

Consistency in the presentation and inter-
pretation of data is important, and the choice of 

a particular approach should stand if the validity 
of the statistical method used has been estab-
lished. Unwarranted changes from parametric 
to non-parametric tests or vice versa during the 
process may raise concerns about the reliabil-
ity of the statistical analysis and affect the fi nal 
result. 

Summary

Exploring clinical data is an integral part of med-
ical research. One of the fi rst steps is to distin-
guish whether the data is continuous, quasi-con-
tinuous or discrete. Since outliers of different ori-
gins can affect the fi nal results, it is important to 
notice them and decide what to do about them. 
When analysing the data distribution, graphi-
cal and numerical methods should be used after 
adequately identifying whether the data have 
a normal distribution; non-parametric or para-
metric tests should be used in further analysis.

Reliable and correct statistical analysis is 
crucial in medical research for many reasons, 
including accurate data interpretation, fi ndings 
validation, evidence-based decision-making, and 
generalisability of results. It underpins the cred-
ibility and impact of medical research, leading 
to advances in healthcare and improved patient 
outcomes.
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