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ABSTRACT

In medicine, tissue engineering has made signifi cant advances. Using tissue engineering techniques, trans-
plant treatments result in less donor site morbidity and need fewer surgeries overall. It is now possible to 
create cell-supporting scaffolds that degrade as new tissue grows on them, replacing them until complete 
body function is restored. Synthetic polymers have been a signifi cant area of study for biodegradable scaf-
folds due to their ability to provide customizable biodegradable and mechanical features and a low immu-
nogenic effect due to biocompatibility. The food and drug administration has given the biodegradable poly-
mers widespread approval after they showed their reliability. In the context of tissue engineering, this paper 
aims to deliver an overview of the area of biodegradable and biocompatible synthetic polymers. We also dis-
cussed the frequently used synthetic biodegradable polymers in tissue scaffolding, scaffold specifi cations, 
polymer synthesis, degradation factors, and fabrication methods. Particular examples of synthetic polymer 
scaffolds are investigated to emphasize the many desired properties and corresponding needs for skeletal 
muscle and bone. Increased biocompatibility, functionality, and clinical applications will be made possible 
by further studies into a novel polymer and scaffold fabrication approaches.

Introduction

Since its development, synthetic polymer chem-
istry has advanced tremendously, thanks to 
decades of invention and advancement, leading 
to the variety of plastics people use daily. These 
polymers are suitable for various applications 

because of their highly functional characteris-
tics, including toughness, stability, and durabil-
ity. Degradation is one of the fascinating features 
of several polymers that has great signifi cance in 
biomedicine and global waste management. Bio-
degradable polymers are crucial to developing 
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polymer chemistry because they are intrinsically 
susceptible to harsh conditions and environmen-
tal deterioration. Since biodegradability is high-
ly valued in many sectors, medicine and tissue 
engineering have shown a particular interest in 
these polymers.

The dearth of donor sites in autologous grafts 
and the absence of the necessity for subsequent 
or repeated operations to eliminate non-degrad-
ed material are two advantages of tissue engi-
neering over conventional grafting techniques [1]. 
The scaffold seeks to replicate the extracellular 
matrix (ECM), a structure surrounding the cells [2, 
3]. A scaffold usually has various functions like 
monitor water and ion absorption, transport glu-
cose and waste products, and protect cells from 
external strain pressures. As a therapy method, 
tissue engineering platforms can be transplanted 
into tissue defect locations or employed in vitro 
to create more accurate disease models [4]. The 
biodegradable scaffold will keep cells in place and 
then decay at a regulated pace so that the cells 
proliferate and produce their own ECM to sub-
stitute the scaffold, resulting in fully functioning 
regenerated tissue in the end [5]. Because fewer 
operations are needed to remove non-biodegrad-
able scaffolds, and fewer long-term immunosup-
pressant medications are required, biodegrad-
able polymers exhibit considerable benefi ts over 
the other substrates utilized as tissue scaffolds 
[6]. To achieve the ideal balance between func-
tional qualities and biodegradation, biodegrad-
able scaffolds must be adjusted.

Therefore, ideal tissue scaffolds should have 
high biocompatibility in both their scaffold and 
degraded forms. They should also have the nec-
essary mechanical qualities to tolerate stress 
forces and supporting cells in vivo [7]. Addi-
tionally, scaffolds should have proper surface 
chemistry and be highly porous and permeable 
to allow cell adhesion and movement inside the 
scaffold while tolerating the required nutrition 
exchange [7]. These characteristics guarantee 
that tissue scaffolds perform at their peak levels, 
offering cells an environment to develop func-
tional tissue-like structures [1]. In order to main-
tain acceptable structural characteristics during 
deterioration and fi nally be substituted by the 
regenerated tissues, the pace of degradation of 
scaffolds must also be confi gurable to their spe-
cifi c uses. Additionally, the precise mechanical 

and compositional characteristics and needs of 
a scaffold fluctuate greatly depending on the tis-
sue type in a question and patient variations like 
age and gender [8]. Therefore, when evaluating 
certain biodegradable materials for the implant, 
a highly adaptable and flexible scaffold design is 
crucial.

Although natural polymers, like collagen, may 
be the most biocompatible and closely mimic the 
in vivo environment, they still have limits due to 
their poor mechanical characteristics and immu-
nogenicity [7, 9]. Natural polymers, like fi brin and 
collagen, have the advantage of incorporating 
cell recognition and adhesion sites, like the argi-
nine-glycine-aspartate (RGD) motif, which was 
fi rst identifi ed in natural polymers [10]. Therefore, 
the focus of this review will be on biodegradable 
synthetic polymer-based scaffolds, with an appli-
cation-focused discussion of the advantages of 
composite materials with natural polymers. This 
review will fi rst look into the processes of biodeg-
radation and the unique physicochemical proper-
ties of biodegradable polymers, which enable and 
regulate this process. The usefulness of such 
materials in medical operations will next be high-
lighted through a study of production methods 
and examples of the implementation of specifi c 
biodegradable and biocompatible polymers in 
skeletal and bone tissue engineering.

Frequently used polymers

Numerous synthetic polymers, such as polyure-
thanes, polyacetals, and polyanhydrides, have 
the characteristics necessary for biodegrad-
able scaffolds, as described above [6]. How-
ever, synthetic aliphatic polyesters, particularly 
poly (-caprolactone) (PCL), polylactic acid (PLA), 
which comes in two optically isomeric forms (D 
and L) and a racemic form (DL), and polyglycolic 
acid (PGA), as well as their copolymers, are the 
most frequently and widely utilized polymers 
for tissue engineering [6, 8, 11]. These polymeric 
materials are vulnerable to hydrolytic degrada-
tion through de-esterifi cation, and the derived 
monomers are readily excreted from the body, 
making them extremely attractive as tissue scaf-
folds [12]. They also have good biocompatibility 
and sustainable production methods [6]. They 
have effectively been employed in clinical goods 
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because of their well-researched biodegradable 
and bioabsorbable qualities [5]. Pure versions of 
these polymers do, however, have some inherent 
drawbacks that must be considered. PLA's rela-
tively poor cytocompatibility and biological inert-
ness are two of the material's most signifi cant 
flaws when used to create biodegradable tissue 
scaffolds [13]. Pure polymers frequently support 
decreased cellular contact and tissue regenera-
tion. These polymers are commonly mixed in 
blocks with other polymers to tailor their degrad-
ability and mechanical characteristics to create 
better biomimetic and biocompatible scaffolds 
[5]. Numerous different chemical alterations, 
including the addition of hyaluronan [13], metallic 
nanoparticles [14], ceramics [15], or hydroxyapa-
tite [16], have been demonstrated to increase the 
bioactivity of many polymers, enabling more effi -
cient use in tissue engineering.

Blending synthetic polymers with substances 
like the aliphatic polyester group polyhydroxyal-
kanoates (PHA), which includes poly-3-hydroxy-
butyrate (PHB) and poly-3-hydroxyoctanoate 
(PHO), is another alteration [17]. Although these 
polymers may be synthesized, microbes often 
create them in purposefully imbalanced envi-
ronments [18]. PHB may be synthesized from 
various monomers, such as BBL [19], propylene 
oxide, and carbon monoxide, to create syndiotac-

tic PHB with lower crystallinity and a more sig-
nifi cant transition melting temperature than its 
isotactic bacterial version [20]. polyorthoesters 
and polyanhydrides are surface-eroding bioma-
terials, in contrast to aliphatic polyesters, which 
are bulk-eroding. This enables them to deliver 
pharmacological payloads for an extended peri-
od at a controlled gradual rate while maintain-
ing structural integrity. The only surface-erod-
ing biomaterial that has received FDA approval 
is polyanhydrides. Yet, its complex manufacture 
and weak mechanical properties have prevented 
them from fi nding broader usage. Another more 
popular polymer is polyethylene glycol (PEG), 
a cross-linked hydrogel with soft gel-like proper-
ties that has potential in drug administration and 
wound healing. Based on its position in the body, 
PEG degrades in a different manner [21].

Many biodegradable synthetic polymers are 
used in tissue engineering as scaffold materials 
presenting unique properties, as shown in Fig-
ure 1. It is crucial to remember that compounds 
are frequently copolymerized or changed for 
a specifi c usage by changing various parame-
ters. It would be too huge to be practical to cre-
ate a complete library in tabular form that lists 
all the available polymers, together with copoly-
mers, composites, and other types of modifi ed 
polymers, along with their many production pro-

Figure 1. Properties of scaffolds used for application in tissue engineering
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cesses, characteristics, and uses. However, com-
piling this data into a clear and concise database 
would help researchers and industrial players to 
comprehend the present state of the art for spe-
cifi c polymers and enable future research and 
industry to make decisions more quickly. This 
database may be connected to primary research 
publications and reviews like this one, allowing 
people to look deeper into the intricacies after 
choosing particular polymers or materials.

Mechanism of Degradation

Prior to describing how biodegradable polymers 
are utilized in tissue engineering, it's critical to 
talk about the degrading traits that make them 
desirable as biodegradable scaffolds. Oxidative 
biodegradation and hydrolytic biodegradation are 
the principal in vivo polymer degradation process-
es [11]. The former depends on reactive radical 
molecules created in vivo by phagocytic assault. 
Contrarily, hydrolytic degradation is a passive 
process that breaks down chemical bonds sus-
ceptible to interaction with water [11]. Passive 
hydrolysis stands out as the primary breakdown 
method in biological settings because of syn-
thetic polymers' relatively reduced sensitivity 
to enzyme activity [22]. Due to hydrolytic break-
down, polymers can erode on their surface or in 
bulk. The macroscopic scale polymeric scaffold 
shrinks while keeping its structure at a uniform 
degradation rate because surface erosion only 
affects the polymer surface, as the name implies. 
Contrarily, bulk erosion occurs throughout the 
polymer, maintaining the polymer's size even 

when the degradation rate is not linear [22]. For 
tissue scaffolds and their intended uses, it is cru-
cial to know whether the form of erosion is preva-
lent [15, 22]. The hydrophobic nature of scaffolds 
affects the diffusion of water into and across 
the polymeric scaffold, which in turn affects the 
pace of hydrolytic action. This is where polymeric 
scaffolds' pore size comes into play since bigger 
pore sizes allow for easier osmosis into the scaf-
fold, which favors mass erosion.

Additionally, amorphous parts of polymers are 
destroyed fi rst in biological settings because they 
are packed less densely and more favorable to 
diffusion. As a result, the crystalline areas remain 
intact for a more extended period [23]. It follows 
that a higher polymer crystallinity correlates with 
greater stiffness and strength as well as a slow-
er rate of degradation. Another crucial factor is 
the polymer's glass transition temperature (Tg), 
particularly when considering the mechanical 
needs of scaffolds [23]. For instance, bone scaf-
folds often need long-lasting mechanical quali-
ties; therefore, their Tg has to be higher than body 
temperature to guarantee an acceptable level of 
stiffness while still delaying early degradation 
[23].(Figure 2).

The molecular weight of the polymer has 
a substantial influence on the rate of degrada-
tion [24]. A rise in molecular weight causes more 
secondary bonds and entanglements to form 
between chains, which results in stronger bond-
ing between polymer chains and a slower rate 
of disintegration [24]. A property of polymers 
that can store this data is dispersity, calculated 
as the ratio of weight average molecular weight 
and number average molecular weight (Mw/Mn). 

Figure 2. Schematic Diagram of mechanical degradation
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Higher dispersity values highlight a smaller Mn 
because smaller molecules are easier to break 
down and may be broken down more quickly. 
Hence, biodegradable polymers need less dis-
persity, implying less variation in the chain length 
of the polymer, enabling better forecasts of the 
breakdown rate within shorter durations that 
consequently avoid problems like infection and 
inflammation [24, 25].

The versatility of synthetic polymers for tis-
sue engineering applications makes it appealing 
to adjust the breakdown rate to fi t specifi c needs. 
Copolymerization, in which the result consists 
of blocks of several degradable polymers, illus-
trates how to do this. Poly-L-lactide (PLLA), poly 
(-caprolactone) (PCL), and polyurethane, to men-
tion a few, have all been fi ne-tuned using this 
approach [26–28]. Other strategies to control the 
degradation rate include blending, surface modi-
fi cation, and the inclusion of plasticizers [29]. By 
utilizing these methods on the wide variety of 
readily accessible polymers, polymer breakdown 
may be tailored to its role in tissue engineering.

Synthesis of Polymers

The polymers themselves must be produced 
before specialized 3D scaffolds can be created. 
There are two ways to make synthetic polymers: 
(i) step-growth polymerization of hydroxy-ac-
id or combinations of diacid/diol monomers; or 
(ii) chain growth by ring-opening of cyclic mono-
mer units [30]. The former is often quicker and 
generates more monomers with a greater molec-
ular weight [31]. The second method is frequently 
preferred since, for aliphatic polyesters, that's not 
an issue [32]. The removal of severe reaction con-
ditions, the elimination of undesirable byprod-
ucts, and more command of stereochemistry and 
molecular weights, which results in higher-quality 
polymers, are further advantages of chain-growth 
polymerization [33, 34]. In order to produce PCL, 
PGA, and PLA, it is therefore commonly employed 
[33]. Tin (II) bis (2-ethylhexanoate), often known 
as Sn (Oct) 2, is used in the manufacture of 
PLA in the vicinity of alcohol (ROH), although 
ring-opening needs catalyst-initiators. [30, 33]. 
There is no study to fi nd metal-free catalysts 
that accomplish the same reaction rate [32, 35]. 
Adding heavy metal catalysts like Sn (Oct) 2 risks 

contamination during manufacturing, raising 
costs and potential toxicity of the fi nished prod-
uct. Particularly, organocatalysts have increased 
their potential for ring-opening polymerization of 
racemic PLLA [19].

Other polymers, such as polyurethane (PU) 
and polyurethane urea (PEUU), are better suited 
for manufacture by step-growth polymerization 
because it is less expensive and more effi cacious 
[31]. They are created mainly by processing hex-
amethylene-diisocyanate (HMDI) with a diol, then 
reacting with other polymers like PCL to gener-
ate a block polymer that can be broken down by 
de-esterifi cation [36, 37].

Enzymatic polymerization is the third tech-
nique of polymer synthesis that is being increas-
ingly researched as a more ecologically friendly 
substitute for both step and chain-growth pro-
cesses [38]. Here, the immobilized enzymes, like 
ionic-liquid-coated lipases extracted from bac-
terial culture and deposited in a solvent solution, 
are combined with synthetic polymers like PCL 
[38]. Although reaction optimization and eco-
nomic feasibility are still being investigated, this 
approach may create large molecular weights of 
polymers such as polyesters [39]. 

The production method frequently uses many 
monomers. Based on their combination ratio, 
block polymerization functions to integrate the 
qualities of its component homopolymer sec-
tions [40]. Contrarily, copolymerization of numer-
ous monomers is frequently utilized to produce 
materials with unique features, perhaps with 
reduced stiffness, enhanced crystalline nature, 
or higher deterioration than any homopoly-
mer. These manufacturing processes frequently 
result in straightforward pre-polymer forms, and 
their ultimate structure is usually achieved by 
the inclusion of extra blocks of polymer or side 
chains. These procedures enable atomic-level 
manipulation and control of polymer character-
istics [40].

Fabrication of polymeric scaffolds

Once these polymers are created, they may be 
transformed into scaffolding structures to per-
form the desired tissue engineering functions. 
The method utilized to create the scaffold can 
signifi cantly impact how it functions in vivo. 
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There are several techniques; the most popular 
ones include solvent casting, gas foaming, elec-
trospinning, particle leaching, and additive manu-
facturing. Each produces a distinct structure and 
usefulness [9, 41]. These techniques' economic 
aspect is also crucial [42]. Particulate leaching 
refers to the addition of particles that are solu-
ble in the polymer while it is still being formed. 
Later, the particles disintegrate in deionized 
water, leaving a web of porous holes behind [43]. 
Laminating layers of separately leached sheets 
can create a 3D scaffold [41]. Particulate leach-
ing is a straightforward and inexpensive method, 
but it lacks precise structural control since pore 
interconnectivity depends only on the size and 
number of particles supplied [43, 44]. Since this 
ensures strong pore interconnectivity, it is suit-
able for scaffolding constructions with excep-
tionally high porosity leading to low load-bearing 
capacities, such as endothelial tissue [43].

One of the most extensively studied methods 
of scaffold production is electrospinning [43]. 
Mixing a biodegradable polymer, such as PCL, 
with a conductive polymer and injecting the mix-
ture from needles under high voltage produces 
electrically active fi bers. With the introduction 
of an external magnetic fi eld, nanofi brous elec-
trospun materials feature tuneable porosities, 
a high surface area-volume ratio, and adjust-

able porosities [45]. This method is quite effec-
tive, but it necessitates the optimization of sev-
eral variables, including the applied voltage, solu-
tion concentration, and system humidity [43]. 
The fundamental issue is that the scaffold's need 
for a considerable amount of conductive polymer 
might change its mechanical characteristics [45] 
(Figure 3).

Innovative methods for producing scaffolds 
have also been made possible by advance-
ments in additive manufacturing technology. 
Size, porosity, and shape may be fi nely controlled 
throughout the scaffold using fused-deposition 
modelling, selective laser sintering, and stereo-
lithography [46]. Using a computer-aided design 
model, thermoplastic polymers like PCL and 
PLA are extruded in fused-deposition modelling 
to create layer-by-layer depositions. It makes it 
possible to create intricate porous scaffolds with 
precise dimensions [4, 48]. Optimization of addi-
tive manufacturing processes is highly desir-
able because of its accuracy and patient-specifi c 
potential, and this research topic is quite active 
[46, 49, 50]. 3D printing is among the promising 
technologies in tissue engineering and regen-
erative medicine to develop advanced scaffolds. 
This technique has been shown to successfully 
seed cells that lead to effective bone growth, and 
it may be utilized to generate tailored scaffolds 

Figure 3. Various fabrication methods for scaffolds
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using patient CT images [47]. Various materials 
are used for the 3D printing of scaffolds. Photo-
sensitive resins, cross-linkable hydrogels, tem-
perature sensitive polymers, thermoplastics, and 
ceramic paste are commonly used in scaffold 
3D printing. It enables the creation of more pre-
cisely crafted biomimetic scaffolds with added 
bioactive ingredients to improve their function-
ality. Unprecedented potential for producing tis-
sue structures from bone to skin has been dem-
onstrated by 3D bioprinting stem cells. It allows 
for the delivery or mounting of cells and physi-
cochemical factors essential for tissue regen-
eration, thus making 3D bioprinting a promising 
technology for future regenerative medicine. 

Applications

The body has several different tissue types, 
each with unique structural characteristics and 
ECM compositions. When contemplating the 
sort of tissue that has to be replaced, the abil-
ity to customize the scaffold's qualities is quite 
helpful. The body is supported and protected by 
bones, which give more robust physical stability 
and a higher ECM: cell ratio primarily comprised 
of collagen [2]. In contrast, skin and muscles 
need to stretch rather than exert such mechani-
cal strength, which causes the fraction of elastin 
in the ECM to grow [51]. Tendons and ligaments 
flexibly transmit stresses between muscles and 
bones, extending and recoiling to increase move-
ment effectiveness. These require excellent ten-
sile and mechanical strength, attained using 
plenty of aligned collagen structures [52, 53]. 
This summary clarifi es that different tissue types 
have different scaffolding needs, which must be 
considered when choosing polymers and pro-
duction techniques [5].

This section examines the particular needs 
and uses of synthetic biodegradable polymers 
in a couple of tissue types—skeletal muscle and 
bone-selected for their contrast. Studies on bone 
biomaterials have had a lot of success; there are 
currently clinical studies and various products 
on the market as a result [9, 54]. To the authors' 
knowledge, there isn't a clinically tested scaffold 
for skeletal muscle. These variations in patient 
accessibility have tissue complexity as their 
underlying cause. Still, they are also influenced 

by fi nancial accessibility and the compatibility of 
existing authorized approved polymers to their 
needs [55, 56]. Here, we'll concentrate on the syn-
thetic scaffolding methods utilized or investigat-
ed in these two subfi elds.

Scaffolding of Bone tissue
In order to enable regenerated bone to substitute 
the supports lost from the scaffold, the compli-
cated interaction between mechanical support 
and time for degradation must be regulated due 
to the specifi c mechanical needs of bone-tissue 
scaffolds. For bone regeneration or osteoinduc-
tivity, a porosity of between 80 and 90 percent 
[57] and a pore size greater than 300 m are desir-
able [8, 58]. This might be improved by including 
osteoinductive, or growth, substances that can 
be released during disintegration [59]. Bone is 
a composite substance mostly made of the poly-
mer collagen and the inorganic ceramic apatite 
[60]. Therefore, simulating this natural environ-
ment using composite scaffolds made of inor-
ganic and polymeric phases may help in regener-
ation. Numerous polymers and polymer compos-
ites have been used to create clinical-grade scaf-
folds that successfully regenerate bone and have 
led to the development of commercial goods by 
including the optimum qualities for bone-tissue 
engineering scaffolds. Aliphatic polyesters like 
PGA, PCL, and PLA have been used quite often 
because they were given US FDA permission. The 
following will include specifi c scientifi c publica-
tions that accelerated commercial development, 
followed by illustrations of particular goods that 
are presently on the market.

In vitro osteogenic differentiation was dem-
onstrated by [60] using a PLGA electrospun scaf-
folding with integrated silica nanoparticles, which 
led to increased bone nodule development and 
collagen secretion. A rat model used a different 
PLGA composite functionalized with a peptide 
similar to the osteoinductive bone morphogenet-
ic protein 2 (BMP-2) to heal a critical-sized cra-
nial lesion [61] successfully. The PLGA composite 
employed in this work is an appealing scaffold for 
bone tissue engineering applications due to its 
mechanical similarities and displaying that it may 
induce osteogenic differentiation as well as bone 
formation in vivo. For hip replacement surgery, 
PLA has been employed as a biodegradable bone 
graft with a metal core, demonstrating that it is 
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biocompatible and mechanically stable for effec-
tive bone regeneration [62].

Inorganic material has been added to scaffolds 
in several research areas to promote biomimicry 
and bone tissue regeneration. As early as 1986, 
a PLA/hydroxyapatite composite presented effi -
cacy as a bone-fi lling scaffold in vivo [63]. Lately, 
a composite of PCL/hydroxyapatite helped bone 
marrow mesenchymal stem cells proliferate and 
differentiate [64]. Beyond biomimicry, adding 
hydroxyapatite to these investigations removes 
the drawbacks of pure hydroxyapatite's fragil-
ity and weak mechanical strength [65]. Recent 
research has demonstrated that it is possible to 
employ 3D printing to enhance hydroxyapatite 
content in a PLA composite without drastically 
changing the scaffold's mechanical characteris-
tics. Investigation into hydroxyapatite-contain-
ing polymer composite is still underway [65]. The 
prior study found that this scaffold was benefi -
cial both in vitro and in vivo; problems persisted 
with increased acidity levels during PLA break-
down that might cause inflammation. Even if 
the amount of hydroxyapatite has grown, further 
study is still needed before this scaffold is widely 
used in clinical settings.

Natural polymers could be added with syn-
thetic polymeric scaffolds or utilized as coatings 
with the aim of promoting cell adhesion because 
of the advantage of possessing cell-binding RGD 
sites. Collagen coating was used to achieve this 
effect, which improved cellular adhesion and dif-
ferentiation in PLGA [66] and PLLA [67]. In a dif-
ferent research, the persistent release of the 
BMP2-related peptide P28 was combined with 
a scaffold made of small intestine submucosa 
(SIS) and PLA to improve bone regeneration [68]. 
Collagen I and glycosaminoglycan-containing SIS 
were combined with PLA to create a highly biomi-
metic scaffold with tuneable bone-tissue devel-
opment and breakdown. The specifi cs of several 
further experiments, including various polymer 
kinds, production processes, applications, and 
degradation timeframes, may be found in review 
papers [69, 70].

The studies cited above support the potential 
utility of specifi c polymers in bone regeneration. 
This has sparked numerous clinical investiga-
tions and the development of commercial goods. 
Zimmer Biomet produces a range of implants 
and screws called LactoSorb® that are made 

of PLA and are used in craniofacial procedures 
[71]. Narayanan et al. [69] provide a summary of 
several other commercially available PLA-based 
solutions, including RapidsorbTM and Biocryl®. 
Although several clinical investigations, such as 
using 3D-printed PCL scaffolding in dental sur-
gery, are now underway, the economic success of 
other polymer kinds is less obvious.

Scaffolding of skeletal muscle tissue
To effi ciently transfer force along the tissue, 
muscle has precise alignments and lengths of 
fi brils [72]. The skeletal muscle stem cells, or 
satellite cells [73], multiply, develop into multi-
nucleated myoblasts, and subsequently merge 
into myotubes when forming new tissue [74]. Pro-
moting satellite cellular migration into the scaf-
fold is crucial because a skeletal muscle scaffold 
should be able to effi ciently control cell migration 
and development to form these parallel, highly 
ordered fi bers [72]. The architecture of skeletal 
muscle, mainly regulated mechanically, adds 
to the complexity of tissue scaffolding. A static 
scaffold cannot provide these physical develop-
ment signals; therefore, the myotubes develop 
randomly [45].

Due to this, cultured skeletal muscle per-
forms poorly when subjected to force in vivo [75] 
[76]. The scaffold must be exposed to a rhythmic 
mechanical or electrical component to simu-
late actual muscle usage in order to prevent this 
random direction of myoblast development [74]. 
Incorporating conductive polymers into the scaf-
fold of skeletal muscle has been one of the main 
study areas [77]. Electrical stimulation has been 
found to cause muscle contractions and orient 
myoblasts parallel to the vectors of the electric 
fi eld [78], suggesting that it may be a straightfor-
ward and affordable way to guarantee alignment 
and contractile capabilities. Electrospinning, 
which needs a highly conductive component to 
work, is well suited for the job since it can gener-
ate regulated alignment of polymer fi bers. To cre-
ate such an aligned polymer fi ber scaffold, Chen 
et al. employed an electrospinning approach with 
a mixture of PCL and polyaniline (PANi) [45].

In vitro mouse myoblasts showed high-
er myotube fusion and cell proliferation than 
a non-aligned PCL/PANi combination. Similar 
outcomes were obtained by Jun et al. [79] using 
a mixture of poly(L-lactide-co-epsilon-capro-
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lactone) (PLCL) and PANi, which combined the 
stiffness and brittleness of PANi with the highly 
elastic PLCL to produce a scaffold that was more 
suited than either pure polymer alone. A PANi-PL-
CL ratio of 3:7 was able to produce 170 percent 
strain, which is more than skeletal muscle can. 
However, PANi does not disintegrate despite 
being biocompatible [40, 45]; therefore, additional 
research into its polymer structure is necessary 
before it can provide the qualities that a biode-
gradable scaffold needs. 

The usage of hydrogels is another method for 
scaffolding skeletal muscle. The FDA has cleared 
PEG, a highly biocompatible hydrogel for inter-
nal ingestion. Its cross-linking density, Mn, and 
water: polymer ratio may all be easily changed 
to change its qualities. After cells are suspend-
ed inside, its derivative, PEGDA, which is made 
by replacing its terminating hydroxyl groups with 
acrylate, may gelate from a liquid to a solid form 
when exposed to UV radiation. So, rather than 
relying on a premade scaffold form to specify the 
shape of the muscle tissue, the scaffold may be 
constructed after the myoblasts have matured 
into it. PEG, when mixed with a biological cell-ad-
hesive foundation like fi brinogen, produces 
a scaffold with both tunable physical features 
and cell-signalling capabilities, facilitating blood 
vessels' formation and skeletal muscle regenera-
tion in vitro [74]. Han et al. employed PEG in vivo 
as an injectable scaffolding cell-delivery method 
because it can be functionalized with maleimide 
groups, which makes it possible to store stem 
cells and adhere to patient tissue [18]. Dong et al. 
could combine the advantages of hydrogels with 
those of conductive polymers [40]. They mixed 
PEG with polyglycerol sebacate (PGS), a very 
hydrophilic polymer but also elastic [40]. Aniline 
pentamer (AP) side chains were added by esteri-
fi cation to the resultant polymer PEGS to increase 
conductivity. PEGS fi lms possessed mechani-
cal qualities that prevented mechanical fatigue 
and encouraged myoblast growth. Further inves-
tigation is warranted because this conductive, 
stretchy hydrogel can provide mechanical and 
electrical stimuli to control tissue development.

The combination of aliphatic polyesters and 
polyurethanes represents a relatively recent 
development in biodegradable skeletal muscle. 
Hydrophobic PCL and hydrophilic PEG copoly-
mer soft segments and PU hard segments are 

combined to create thermoplastic PU and PEUU 
copolymers (TPUs) [37]. The facile customization 
of the synthetic process to adjust the soft and 
hard segment ratios to fi t TPU for skeletal mus-
cle scaffolding is made possible by the tunability 
of synthetic polymer manufacture. A 3D-printed 
scaffold made of oriented TPU fi laments was 
described as "soft yet robust, sturdy, elastic, and 
hydrophilic" by Goyker et al. in 2021 [37]. They 
detected myoblast regeneration and capillary 
development to some extent at the implant site 
when assessed in vivo four weeks after implanta-
tion, with a recovery in the function of 86% [37].

Cartilage tissue engineering is a promising 
method for regenerating cartilage tissue dam-
aged by disease or trauma. Articular cartilage has 
a limited capacity for healing and regeneration, 
making its restoration one of the biggest prob-
lems in musculoskeletal medicine. Cartilage tis-
sue can be repaired when the polymer scaffold's 
mechanical strength and structural toughness 
are met with the requirements. The migration of 
metabolically active cells ECM components that 
are synthesized and turned over in large quanti-
ties is restricted. And hence, artifi cial cartilage 
to develop materials that can mimic natural car-
tilage is preferred. Self-assembly and biomin-
eralization are crucial steps for cartilage repair 
because they mimic the natural ECM process. For 
biomineralization, a composite material resis-
tant to high compressive loads can be formed by 
nucleation and alignment of hydroxyapatite crys-
tals onto bundles of polymeric fi bres. One poten-
tial process by which highly selective nucleation 
could occur is illustrated by a creating model that 
uses a co-polymer hydrogel system. It is believed 
that controlled nucleation may develop in bone 
by a similar approach [80].

Another approach to forming hybrid scaffolds 
for artifi cial biofunctionalization is combining 
synthetic polymers with short peptide sequenc-
es; scaffolds can be rationally designed with 
specifi ed biofunctionality. Bioactive precursors 
with chemically reactive functional groups, such 
as amines, thiols, and carboxyls, or end-func-
tionalized hydrophilic polymers, like PEG, which 
function as physical or chemical crosslinkers, 
can be used to create hybrid multifunctional 
networks. Of these multifunctional systems, the 
most adaptable and distinctive ones are based 
on PEG-peptide hydrogels. The peptides in this 
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system are made to be substrates vulnerable to 
proteases produced on the surfaces of migratory 
cells, such as plasmin and matrix metalloprotei-
nase (MMPs). The fi eld of cartilage reconstruc-
tion is expanding at a fast pace with many recent 
developments [81].

Conclusion

This fi eld of study has particular diffi culties 
because of the special biocompatible and biode-
gradable needs of tissue scaffolds and the intri-
cacy of their interconnections within the human 
body. A scaffold must not only perform and decay 
correctly, but it should also do so for the proper 
tissue type, as each has specifi c mechanical and 
morphological needs. Even though a low level of 
dispersion is ideal, other parameters like crystal-
linity, Tg, and strain values are all influenced by 
the kind of tissue. Polymer breakdown kinetics 
must be managed to prevent gaps and inflam-
mation throughout healing. In order to combine 
their properties into a scaffold that is much more 
appropriate for its function than either polymer 
in its pure state, well-researched polymers like 
PLA and PCL are frequently used in conjunc-
tion with other less biodegradable but more tis-
sue-compatible polymers, either in block form or 
as a modifi cation. The variety of fabrication pro-
cesses that a polymer may be made to construct 
the 3D scaffolding the body demands, adjusting 
permeability and fi ber arrangement to govern 
cell migration and proliferation, further enhances 
this control over the scaffold characteristics and 
mechanics. Bone, which has high porosity and 
stress requirements, has given rise to PLA-based 
scaffolds of bone that have been effectively used 
in clinical studies. Until now, PCL and PEG-based 
polymer scaffolds have been the sole in vitro 
success for muscle, which requires a conduct-
ing and elastic scaffold capable of experiencing 
mechanical loading. Clinical research has been 
restricted to a small number of biodegradable 
scaffolding polymers since only a few of them 
have received FDA and MHRA approval. Despite 
extensive study on their characteristics, these 
polymers aren't ideal for scaffolding in their pure 
forms. Even a perfect scaffold is still ten years 
away from being used in the general population 
since research into novel polymer architectures 

is now restricted to in vitro experiments, and rig-
orous testing is needed before clinical trials can 
be conducted. Synthetic polymers can be tuned 
in terms of both mechanical and biodegradable 
properties [56]. This review has just scratched 
the surface of the fi eld's possible polymer and 
scaffold architectures because of the tunability, 
co- and block polymerization, and differences in 
the scaffolding approach. Establishing a list of 
known scaffold polymers accessible to the pub-
lic and containing information on their charac-
teristics, the impacts of various manufacturing 
methods, and the effects of copolymer additions 
would be the perfect next step for the discipline. 
Such a thorough evaluation of these polymers 
could guide and improve further research. Tis-
sue engineering with biodegradable scaffolds 
is a relatively new area. Until this technology 
is used often in therapeutic settings, there are 
still numerous obstacles to be solved. But more 
research into the function of ECM in cell devel-
opment, together with the evaluation of copoly-
mers and cutting-edge production methods, will 
only expand the potential of this exciting area of 
study.
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