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ABSTRACT

Though SARS-CoV-2 infections are yet to be completely characterised in a host-pathogen interaction con-
text, some of the mechanisms governing the interaction between the novel betacoronavirus and the human 
host, have been brought to light in satisfactory detail. Among the emerging evidence, postulates regarding 
potential benefi ts of innate immune memory and heterologous immunity have been put under discussion. 
Innate immune memory entails epigenetic reprogramming of innate immune cells caused by vaccination or 
infections, whereas heterologous immunity denotes cross-reactivity of T cells with unrelated epitopes and 
bystander CD8+ activation. Familiarization of the host immune system with a certain pathogen, educates 
monocytes, macrophages and other innate cells into phenotypes competent for combating unrelated path-
ogens. Indeed, the resolution at which non-specifi c innate immune memory occurs, is predominant at the 
level of enhanced cytokine secretion as a result of epigenetic alterations. One vaccine whose non-specifi c 
effects have been documented and harnessed in treating infections, cancer and autoimmunity, is the Bacil-
lus Calmette–Guérin (BCG) vaccine currently used for immunization against pulmonary tuberculosis (TB). 
The BCG vaccine induces a diverse cytokine secretion profi le in immunized subjects, which in turn may stim-
ulate epigenetic changes mediated by immunoreceptor signalling. Herein, we provide a concise summariza-
tion of previous fi ndings regarding the effects of the BCG vaccine on innate immune memory and heterolo-
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Background

The COVID-19 pandemic is a rapidly evolving 
situation, with novel information emerging from 
the academic ether on a daily basis. Though the 
immunobiological details of SARS-CoV-2 infec-
tions continue to be uncovered in a rapid rate, 
a modest number of mechanisms governing the 
interaction between the novel betacoronavirus, 
have been brought to light at a satisfactory level 
of detail. Among the evidence that has emerged 
since the onset of the pandemic, postulates 
regarding the potential benefi t of innate immune 
memory and heterologous immunity have been 
put forth and continue to be discussed. Innate 
immune memory entails epigenetic reprogram-
ming of innate immune cells caused by vaccina-
tion, or viral and bacterial infections, whereas het-
erologous immunity colloquially denotes cross-
reactivity of T cells with unrelated epitopes, along 
with bystander CD8+ activation [1]–[11].  On the 
innate level, familiarization of the host immune 
system with a certain pathogen, may educate 
monocytes, macrophages and other innate cells 
into becoming more competent in combat-
ing non-related bacterial or viral pathogens [10], 
[12]. Interestingly, however, T cell cross reactiv-
ity likely stems from host genetic factors rather 
than pathogen-induced epigenetic reprogram-
ming [13]–[19]. Indeed, the resolution at which 
bacteria, viruses and vaccines confer non-specif-
ic effects that lead to innate immune memory, is 
likely at the level of enhanced cytokine secretion 
as a result of epigenetic alterations [5], [9], [10], 
[20]–[27]. One vaccine whose non-specifi c effects 
have been documented and harnessed in treat-
ing infections, cancer and autoimmunity, is the 
Bacillus Calmette–Guérin (BCG) vaccine currently 
used for immunization against pulmonary tuber-
culosis (TB). The BCG vaccine induces a diverse 
cytokine secretion profi le in immunized subjects, 
which in turn may stimulate potentially benefi cial 
epigenetic changes mediated by immunorecep-

tor signalling [8], [28]–[31].  Additionally, the phe-
nomenon of heterologous immunity has not only 
been observed in cases of BCG vaccination. The 
influenza vaccine may confer varying degrees 
of protection against severe forms of COVID-
19 disease and presumably SARS-CoV-2 infec-
tion. This is reflected in studies where patients 
receiving the influenza vaccine within 120 days 
of a positive diagnosis were at a reduced risk of 
post-COVID-19 complications, further coupled 
with a decreased rate of COVID-19 positive cases 
among vaccinated populations [32]–[34]. Howev-
er, much like in the case of BCG vaccination, more 
work is required to derive a defi nitive conclusion. 
Unsurprisingly, in a recently published preprint 
by Föhse et al. it was reported that the COVID-19 
BNT162b2 mRNA vaccine likely induces complex 
innate immune system reprogramming at the level 
of cytokine regulation, offering protection against 
unrelated bacterial, fungal and viral stimuli [35]. 

A correlation between reduced COVID-19 
morbidity and universal BCG vaccination has 
been implied since the early stages of the pan-
demic, though the immunobiological background 
and potential clinical signifi cance of this remains 
to be substantiated [36]. Indeed, BCG vaccina-
tion leads to cellular memory at the level of both 
cytokines and cytokine-related transcription 
factors, some of which have been identifi ed as 
potential targets of SARS-CoV-2 in order for the 
virus to establish immunosuppression [37]–[40]. 
The importance of this is reflected in the fact 
that SARS-CoV-2 dampens the adaptive immune 
response by acting directly on the transcriptional 
machinery of innate immune cells. Considering 
that the BCG vaccine leads to epigenetic changes 
that may be benefi cial in preventing SARS-CoV-
2-mediated immunosuppression or dissemina-
tion, this issue must be addressed in a methodi-
cal way that draws back to basic immunobiology, 
rather than mere statistical epidemiology. Herein, 
we provide a concise summarization of previous 
fi ndings regarding the effects of the BCG vaccine 

gous immunity, supplemented with clinical evidence of the non-specifi c effects of this vaccine on non-my-
cobacterial infections, cancer and autoimmunity. This interpretative synthesis aims at providing a plausible 
immunological and immunogenetic model by which BCG vaccination may, in fact, be benefi cial for the cur-
rent efforts in combating COVID-19.
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on innate immune memory and heterologous 
immunity, supplemented with clinical evidence of 
the non-specifi c effects of this vaccine on non-
mycobacterial infections, cancer and autoimmu-
nity. This interpretative synthesis aims at provid-
ing a plausible and unbiased immunological and 
immunogenetic model by which BCG vaccination 
may, in fact, be benefi cial for the current efforts in 
combating COVID-19.

Cellular Entry of SARS-CoV-2

SARS-CoV-2 infections share similarities with 
the Middle East Respiratory Syndrome (MERS)-
CoV and Severe Acute Respiratory Syndrome 
(SARS)-CoV in their mode of interaction with 
the human host. There is signifi cant recep-
tor binding domain (RBD) similarity between 
SARS-CoV and SARS-CoV-2 found on the spike 

Figure 1. Type I and type III interferon responses are pivotal in the human innate 
antiviral response. Canonically, type I IFN signalling eventuates in the activation 
of the Janus kinase (JAK) and signal transducer and activator of transcription 
(STAT) 2 proteins, whereas type III IFN responses recruits STAT1. Interferon reg-
ulatory factor (IRF) 9, particularly relevant in the antiviral response, associates 
with the JAK-STAT dimer, thereby creating the IRF9 transcription factor. IRF9 
transcription factor is translocated into the nucleus, upon which it binds to the 
interferon stimulated response element (ISRE) located upstream of the interferon 
stimulated genes (ISG)
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(S) protein of both viruses [41], [42]. SARS-CoV 
and SARS-CoV-2 infect cells expressing angio-
tensin converting enzyme 2 (ACE2), located in 
the lungs, the gastrointestinal tract, the renal 
tract and the heart [41], [43]–[45]. SARS-CoV-2, 
however, has overall higher binding affi nity for 
ACE2 than SARS-CoV, and this is particularly 
pronounced for several clinically-relevant vari-
ants [39], [46], [47]. Once the S protein is bound 
to ACE2, ADAM metallopeptidase domain 17 
(ADAM 17) and other sheddases cleave the 
extracellular domain as a method of preventing 
cellular entry. ADAM 17 further processes the 
membrane form of the interleukin (IL)-6 recep-
tor (IL-6R)-α into a soluble form that will confer 
activation of signal transducer and activator of 
transcription 3 (STAT3) in non-immune cells, 
under the mediation of gp130. STAT3, in turn, 
activates the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway, 
leading to potentially detrimental inflammatory 
responses [48]. 

It is possible that SARS-CoV-2, like MERS-
CoV and SARS-CoV, binds to non-ACE2 recep-
tors through carbohydrate binding, specifi cally 
various lectins and different glycoconjugates of 
different bacterial strains that comprise the lung 
microbiota [49]. Such fi ndings offer clues for the 
immunosuppressive capabilities of SARS-CoV-2, 
particularly when discussing the notion that the 
viral RBD domain binds to C-type lectins such as 
CD209/DC-SIGN and CD209/L-SIGN, which would 
presumably allow the virus to infect innate and 
adaptive immune cells [38], [50], [51].

Immune Response to SARS-CoV-2

Innate Immune Response
Upon entry of the virus into the cell, cytosolic rec-
ognition of RNA viruses by innate immune cells 
occurs at the interface between the viral RNA or 
replication intermediates and the innate cytosolic 
RNA sensor, toll-like receptor (TLR) 3 and TLR7 
and the cytosolic dsRNA sensor retinoic acid-
inducible gene (RIG) I/ melanoma differentia-
tion-associated protein (MDA) 5 [52]. Production 
of type I interferon (IFN) is triggered when viral 
pathogen-associated molecular patterns (PAM-
Ps) are recognized by these receptors, activat-
ing NF-κB and interleukin regulatory factor (IRF) 

3, which are then translocated into the nucle-
us to initiate transcription of pro-inflammatory 
cytokine genes, including IFN type I [53]. Suc-
cessful secretion of IFN in the cytosol triggers the 
Janus kinase (JAK) - signal transducer and acti-
vator of transcription (STAT) 1 pathway, through 
the interferon-α/β receptor (IFNAR) (Figure 1) 
[53]. Although the role of DCs, and particularly 
resident respiratory DCs (rDCs) in SARS-CoV-2 
infections warrants further research, the clinical 
presentation of COVID-19 is likely in part owed 
to altered DC function, thereby preventing their 
migration to the mediastinal and cervical lymph 
nodes in order to prime virus-specifi c T cells 
[54], [55]. Per contra, impaired rDC migration has 
been correlated with age, thereby offering anoth-
er plausible explanation, or at least a relevant 
factor, to the discussion COVID-19 risk groups 
[55]. Since SARS-CoV-2 is particularly effi cient 
at avoiding IFN-mediated innate immunity, this 
leads to massive immunopathology or extensive 
viral replication in the lungs and the respiratory 
tract, thereby often warranting a need for patient 
hospitalization in the confi nes of intensive care.

Adaptive Immunity in COVID-19
The issue of SARS-CoV-2 adaptive immunity, 
specifi cally protection longevity and its correla-
tion to emerging viral variants, continues to be 
investigated and awaits defi nitive conclusions. 
Though certain studies have reported antibody 
longevity supported by long-lived bone marrow 
plasma cells (BMPCs), some evidence suggests 
that the neutralizing capability of these antibod-
ies for SARS-Cov-2 variants is rendered unsatis-
factory over time, at least for the S protein [56]–
[58]. This is supported by studies reporting re-
infections with genomically distinct SARS-Cov-2 
variants [59], [60]. 

Secretion of cytokines and antigen presen-
tation by antigen presenting cells (APCs) helps 
prime and direct the adaptive immune response 
to infections [61]. The Th1 immune response is 
the key player in response to viral agents, and 
was shown to be particularly relevant for resolv-
ing infections with SARS-CoV and MERS-CoV 
and, unsurprisingly, SARS-COV-2 [52], [62]. In the 
case of SARS-CoV infections, the specifi city of B 
and T cell epitopes were mapped to the M, N, E 
and S viral proteins [63]. For SARS-Cov-2, how-
ever, these epitopes have thus far been mapped 
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to non-structural proteins (nsps), particularly 
nsp3, nsp5, the nucleocapsid (N) protein, the S 
protein and the open reading frame (ORF) 3a [64]. 
Interestingly, an IgM response targeting nsp3 and 
nsp5 have been correlated with a better progno-
sis of COVID-19, whereupon an IgG targeting S, 
N and ORF3a are associated with mortality and 
increased severity [64].  Namely, the serum of 
COVID-19 patients shows moderate cross-reac-
tivity with SARS-CoV and no reactivity for other 
coronaviruses [65].  In terms of seroconversion, 
Zhao et al. found that, among 173 patients whose 
samples were analysed, seroconversion time 
for Ab, IgM and IgG was 93.1% (161/173), 82.7% 
(143/173) and 64.7% (112/173) respectively . Spe-
cifi cally, antibody presence was determined to 
be < 40%; however, after day 15, this signifi cantly 
changed to 100.0%, 94.3% and 79.8% for Ab, IgM 
and IgG respectively, and relatively similar results 
were obtained in other studies [66]–[69]. Interest-
ingly, long lasting IgG and neutralizing antibod-
ies have been reported even 2 years upon initial 
diagnosis with SARS-CoV, and there is encourag-
ing evidence that the same may be true for SARS-
CoV-2 [70]. As evidence continues to emerge, 
it will be interesting to see whether the afore-
mentioned long-lasting neutralizing antibodies 
following SARS-Cov-2 infection will carry suf-
fi ciently broad specifi city for emerging variants 
in terms of the S protein and other immunogenic 
viral proteins.

Increase in serum Th2 cytokines were detect-
ed SARS-CoV, along with a higher frequency of 
polyfunctional CD4+ T cells secreting tumour 
necrosis factor (TNF) α, IFN-γ and IL-2 in severe-
ly ill SARS-CoV patients; an overall increase in 
serum Th2 cytokines were present in patients 
that faced a fatal outcome [71]. However, it 
should be noted that CD8+ cells dominate over 
CD4+ in SARS-CoV, and strongly neutralizing Abs 
are present in convalescent patients [71]. As one 
may infer from the herein presented immunologi-
cal data, severe lung immunopathology occurs at 
the delicate interface between the Th1 and Th2 
immune response, yet commences at the level of 
innate immunity. Reducing IFN-mediated infec-
tion control allows SARS-CoV-2 to evade immune 
defences and delay the onset of adaptive immu-
nity, which later results in rampant inflamma-
tion that damages the protective epithelial alve-
olar tissue comprised of ACE2-expressing type 

II alveolar cells [72], thus leaving the pulmonary 
tissue vulnerable to development of bacterial 
pneumonia [65]. Patients void of certain medical 
conditions generally fare better than those who 
are immunocompromised or who have previously 
been diagnosed with a condition that may be det-
rimental for competently combating viral infec-
tions [43]. 

Immune Evasion Tactics 
of SARS-CoV-2

SARS-CoV dampens the JAK-STAT pathway, 
which seems to be mechanism likely utilized by 
SARS-CoV-2 for immune evasion [52], [53]. This 
results in delayed onset of the INF-mediated 
anti-viral response by way of underexpression of 
genes containing interferon stimulated response 
element (ISRE), which has thus far been support-
ed by in vivo and ex vivo studies on SARS-CoV 
and MERS-CoV [73]–[75]. SARS-CoV success-
fully interferes with induction with type I IFN by 
interfering with downstream signalling of cytoso-
lic RNA sensors, through ubiquitination and sub-
sequent degradation of their adaptor molecules, 
or by inhibiting the translocation of IRF3 into 
the nucleus by way of non-structural proteins 
PLpro and ORF3b [53], [76], [77]. Expressed both 
by MERS-CoV and SARS-CoV, PLpro has also 
been shown to inhibit dissociation of NF-κB from 
I-κB, which in turn inhibits the proper function-
ing NF- κB transcription factor [78]. By reducing 
the host’s ability to control the infection, SARS-
CoV-2 is able to freely replicate within the infect-
ed cell, and the mechanisms by which these eva-
sion tactics eventuate leads to extensive inflam-
matory immunopathology. The reduced IFN-me-
diated viral control paves the way for viremia, as 
suppression of type I and III interferons leads to 
insuffi cient expression of interferon stimulated 
(ISG) genes [43]. These fi ndings are in favour of 
the hypothesized pathogenesis discussed by 
Lin et al., who made the observation that acute 
respiratory distress syndrome (ARDS) is initiated 
somewhere around day 8 of disease onset, likely 
due to the overwhelming increase in pro-inflam-
matory cytokines, neutrophils and other immune 
cells which cause detrimental inflammatory dam-
age to the host when excessively recruited [43]. 
Further supporting this hypothesis are data from 
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138 hospitalized COVID-19, where an increase in 
neutrophils, proinflammatory cytokines, D-Dim-
er and lymphopenia were detected in severely ill 
or deceased patients, contrasted with those who 
successfully recovered [79]. 

Dysregulation of functional T cells is particu-
larly pronounced in SARS-CoV and likely SARS-
CoV-2 infections, leading to overexpression of 
the programmed cell-death protein (PD)-1, T cell 
immunoglobulin and mucin domain-contain-
ing protein 3 (TIM-3) and T cell immunorecep-
tor with Ig and ITIM domains (TIGIT), as a con-
sequence of excess production of IL-6, IL-6 and 
TNF-α [80]–[83]. Inducing overexpression of the 
aforementioned proteins is a sensical approach 
for SARS-CoV-2 to take. After all, even when 
minutely expressed on the surface of T cells, 
PD-1 negatively regulates T cell activity and sees 
elevated expression in exhausted T cells [84]. 
Furthermore, hierarchical T cell loss, along with 
T cell suppression and dysfunction are mediated 
by high expression levels of TIM-3 via imped-
ance of cytokine production, particularly TNF and 
IFN-γ [85]. Expressed as a coinhibitory receptor 
on natural killer (NK) cells, memory T cells, fol-
licular Th cells, and on a subset of regulatory T 
cells (Tregs), TIGIT engagement leads to inhibi-
tion of Th1 and Th17 cell response [86]–[90]. TIG-
IT ligation has been shown to directly suppress 
T cell proliferation and cytokine production of 
CD4+ T cells. Furthermore, TIGIT may indirect-
ly inhibit T cell response through CD155 in DCs, 
leading to the production of the immunosup-
pressive cytokine IL-10 [90]. Though substantial 
work stands in the way of more comprehensive 
understanding, it is clear that SARS-CoV-2 likely 
utilizes similar immune evasion mechanisms as 
MERS-CoV and SARS-CoV in order to circumvent 
the human immune system. 

The Bacillus Calmette-Guérin 
Vaccine 

The Adaptive and Innate Immune Response to 
BCG Immunization
Despite it being the only approved vaccine for 
TB, the protection it offers is quite heterogenous 
in adults and adolescents (0 – 80%) [91]. This 
includes heterogenous effi cacy in the context 
of its initial purpose, which is prevention of dis-

seminated TB, tuberculous meningitis and severe 
forms of TB in children, where factors such as 
geographical location influence vaccine effi cacy, 
though neonatal and postnatal administration of 
the vaccine offers decent protection against pae-
diatric cases of disseminated TB and meningi-
tis (60-80%)  [92]–[94]. In spite of this, the cur-
rent consensus is that there is an urgent need for 
a novel TB vaccine [95]. Even the induced cytokine 
profi les vary across populations. Evidence of the 
benefi ts of re-vaccination is relatively scarce and 
inconclusive, although it has been postulated 
that it does induce cellular and humoral immuni-
ty to an unclear extent [11], [91], [96], [97]. Admin-
istration routes may also play a role in the varying 
effi cacy and limited protection [93]. Though most 
studies regarding discrepancies between BCG 
administration routes and their effects on effi -
cacy stem from animal models, certain human 
studies have shed light on how different strains 
elicit distinct immune responses [98], [99].  This 
is reflected in differences between effi cacy in the 
induction of specifi c IgG and IgA against various 
mycobacterial components such as lipoarabi-
nomannan (LAM). The intranasal administration 
of BCG induces increased production of spe-
cifi c and non-specifi c IgG and IgA through IL-17 
in mice [100], [101]. Studies on Rhesus monkeys 
and guinea pigs found that aerosol BCG adminis-
tration increased protection to virulent M. tuber-
culosis challenge, although antibody production 
was never measured in human aerosol BCG stud-
ies [102]. Interestingly, an NHP-based study on 
intravenous (IV) BCG injections [103], revealed 
strikingly improved protection and precipitat-
ing antibodies post-vaccination, namely IgG, IgM 
and IgA. Currently the specifi c protective implica-
tions of these fi ndings warrant further research, 
however such striking fi ndings are native to IV 
BCG injections alone [91], [104]. Effi cacy of the 
BCG vaccine presumably varies accordingly to 
the virulence of the BCG strain, however there is 
no suffi cient data that clearly elucidates the true 
depth of the immunogenicity of different strains 
and how it confers protective immunity and non-
specifi c effects [91], [105], [106]. 

Another layer of complexity is added to the 
topic of BCG strains by the presence of environ-
mental mycobacteria that humans are exposed 
to in varying degrees across different geogra-
phies [107]–[110]. Limited data is available on the 
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antigens related to environmental mycobacteria, 
thus making the differentiation between differ-
ent T-cell responses and various environmental 
mycobacteria, increasingly diffi cult, particularly 
in the context of BCG [93]. However, different B 
cell epitopes for different BCG strains were pro-
posed as the plausible cause of heterogenous 
effi cacy [111]. It should be noted that the overall 
topic of the humoral response to BCG vaccination 
has been modestly investigated. Regardless, the 
scarcity of comprehensive studies on this partic-
ular topic does not rule out the potentially signifi -
cant effects that BCG vaccination has on humoral 
immunity. 

Innate immune memory is not a novel con-
cept, and has been previously explored to vary-
ing degrees of success in the context of BCG 
and other pathogens. Immunological memory 
of innate immune cells, though in defi ance of the 
dogmatic classifi cation of the innate immune 
system as void of permanent memory, has been 
compellingly challenged in recent years. It is 
known that exposure to PAMPs leads to improved 
innate immune response to bacterial and viral 
infections, though the underlying mechanisms 
behind this are poorly understood [6], [7]. Inter-
actions between cell surface receptors of innate 
immune cells and their agonists, appear to be the 
driving force of these long-lived cellular mem-
ory. Despite there not being a comprehensive 
map displaying the ways in which BCG confers 
innate immune memory, numerous studies have 
validated the assumptions that BCG may effec-
tively be used in non-mycobacterial infections for 
therapeutic purposes. Interestingly, BCG-induced 
training of the innate immune system seems to 
be completely independent of B and T cells. 

Upon administration of the vaccine via intra-
dermal injection, a pro-inflammatory response 
is elicited at the injection site, which includes 
IL-1β, TNFα, monocyte chemoattractant protein-1 
(MCP-1/CCL2), and IL-8, the source of which are 
local innate immune cells [112], [113]. Stimula-
tion of monocytes/macrophages with these and 
other cytokines have been correlated with trained 
immunity. Interestingly, BCG-enhanced IL-1β pro-
duction has been strongly correlated with human 
trained immunity that offers protection against 
the Yellow fever Virus (YFV) [114], [115]. Innate 
immune cells migrate to the injection site around 
day 9 post-vaccination. Adult humans that have 

been BCG vaccinated for the fi rst time have lin-
gering BCG at the injection site for approximately 
4 weeks, eventuating in a cellular infi ltrate com-
prised of mostly of CD15+ neutrophils, although 
CD3+ lymphocytes and CD14+ monocytes may 
also be found [93], [106], [116]. Migration of APCs 
carrying live mycobacteria or mycobacterial anti-
gens to proximal lymph nodes, under the medi-
ation of type I polarizing cytokines and IFN-γ, 
results in education of naïve T-cells into CD4+ 

and CD8+ cells [107], [117], [118]. Presence of IFN-γ 
further propagates antimycobacterial activity of 
macrophages and mediates enhanced antibody 
production by plasma cells [119], [120]. A pool 
of mycobacteria-specifi c CD8+ cells that secrete 
IFN-γ and express granzymes and perforins, are 
detectable in peripheral blood up to 10 weeks 
post-vaccination in human newborns [121], [122]. 
Furthermore, large amounts of TNF-α, IL-2 and 
IFN-γ are produced by Th1 CD4+ cells, which were 
also detectable in ex vivo studies investigating 
BCG-immunized newborns [123]–[125]. Enhance-
ment of the T-cell response to BCG administra-
tion is conferred by neutrophils ingesting live 
BCG [126], [127]. Although macrophages, NK cells 
and monocytes have been given the most atten-
tion in studies regarding innate immune memory, 
DCs may also garner phenotypic changes that 
favour long-lived immunological memory [128], 
[129]. 4-8 weeks upon BCG immunization, a long-
lived B cell response is induced, eventuating in an 
increase in secretion of IgG [119], [130] .

A Model of Innate Immune Memory

Epigenetic Modifi cations of Cellular Memory and 
Response Genes in Innate Phagocytic Cells: TLR 
Signalling
Exposure to the mannose-capped lipoarabino-
mannan (ManLAM) found on the cell walls of M. 
tuberculosis, BCG and other mycobacteria, pro-
mote IL-8 secretion specifi cally by macrophages, 
which further stimulates recruitment and activa-
tion of neutrophils [27], [131]–[134]. However, oth-
er BCG molecular patterns may also be involved. 
Stimulated neutrophils prime macrophages into 
phenotypes that confer protection against a wide 
variety of pathogens, and such phenotypes dem-
onstrate longevity both upon BCG vaccination 
and stimulation by non-mycobacterial PAMPs 
[112], [113], [134]. The root of this longevity may 
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indeed be found in the epigenetic reprograming 
of innate immune cells, as such phenotypes evi-
dently extend towards myeloid progenitor cells, 
with TLR signalling being heavily implicated in 
the process [24]. 

Generally, TLR-associated macrophage 
inflammatory genes may be differentiated into 
primary response genes (PRGs) and secondary 
response genes (SRGs), with PRGs being induced 
within approximately one hour upon stimulation 
[24]. TLR ligation confers permissive chromatin 
regions as a result of histone H3 lysine residue 
4 trimethylation (H3K4me3) and H3 acetylation 
(H3A) (Figure 2) [24]. Such epigenetic modifi -
cations lead to transcriptionally engaged RNA 
polymerase II (RNA pol. II) being bound to the 
promoter proximal regions of stimulus-respon-
sive PRG, even after stimulus-induced signal-
ling. Under homeostatic conditions, certain PRGs 
have higher basal transcriptional activity even 
in the absence of stimulus due to higher levels 
of H3K4me3 within their transcription start sites 
(TSS)  [24]. Of course, TLR signalling enhances 
the transcriptional activity of such genes. These 
basal epigenetic modifi cations have been heav-
ily correlated with the binding of the specifi city 
protein (Sp1) transcription factor to GC-abundant 
CpG elements found within the PRG promoters 
[23], [113]. 

An emphasis to extend of this epigenetic pro-
gramming, are fi ndings pertaining to the pres-
ence of protective BCG-trained monocytes 3 
months following vaccination, and the underlying 
mechanism was associated with H3K4me3 and 
H3A on promoters associated with PRG [22]. BCG 
vaccination signifi cantly increases trimethylation 
of PRG promoters by way of TLR4 and IFN-y-me-
diated signalling in macrophages, though other 
TLRs are very likely involved at least on a mono-
cyte differentiation level [135]. Considering that 
monocytes express each type of TLR, BCG vacci-
nation could induce their epigenetic reprogram-
ming via TLR signalling, thereby causing their 
differentiation into phenotypes of trained immu-
nity [136]. These phenotypes may show increased 
potency for the clearance of viral infections, as 
the aforementioned cells are the fi rst ones to 
encounter viral and bacterial pathogens.

Interferons and Epigenetic Modifi cation 
of Interferon-stimulated Genes
BCG vaccination induces an IFN-γ response 
through stimulation with numerous mycobacteri-
al antigens [28], [93]. Though BCG-induced innate 
immune cell memory phenotypes are increasingly 
studied in the context of protection against bac-
teria and fungi, it may render the innate immune 
system better equipped for viral infections with 

Figure 2. Histone H3 trimethylation at lysine residue 4 at promoter-associated GC-abundant CpG elements, is an epigenetic modifi -
cation associated with trained immunity
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RNA viruses such as SARS-CoV-2. Epigenet-
ic modifi cations committed to cellular memory 
upon IFN exposure open some interesting ques-
tions with regards to SARS-CoV-2 immune eva-
sion tactics, the answers to which are gradually 
emerging. BCG vaccination leads to increased 
production of IFNs, such as IFN-β and IFN-γ, 
therefore creating optimal conditions for epige-
netic modifi cations [25], [26], [137], [138]. Whether 
this holds any merit for COVID-19 prophylaxis or 
treatment remains to be determined. 

The relevance of type I and II IFN in antiviral 
response has been fastidiously substantiated, 
thereby making these IFN classes integral in the 
discussion of SARS-CoV-2 immunopathology 
[26]. IFN stimulation of macrophages eventuates 
in the creation of chromatin marks for transcrip-
tional memory via histone trimethylation of his-
tone H3.3 and H3K36me3 [113]. The ISGs that 
take part in macrophage cellular memory have 
been thoroughly studied, though distinct sets of 
genes of other innate immune cells may undergo 
similar modifi cation when adequately stimulated. 
Interestingly, IFN memory evidently depends on 
functional STAT1, whereas STAT3 appears to be 
redundant for induction of IFN memory pheno-
types [26]. Contextually to innate immune mem-
ory, ISGs may be divided into refractory (108), 
memory (66) and non-memory (251) ISGs, and 
this was elegantly demonstrated by Kamada and 
others in their work on IFN-induced macrophage 
memory [26]. Marks of permissive chromatin 
are most prominent in the memory-associated 
genes, with increased RNA pol. II binding status 
in contrast to refractory and non-memory ISGs 
[139]. Though BCG vaccination induces IFN-γ, 
thereby conferring epigenetic modifi cations of 
ISGs, it is likely that this represents only a com-
ponent of innate immune memory, rather than the 
underlying mechanism. 

BCG-induced Epigenetic Modifi cations Through 
NOD2 Signalling
BCG-induced trained immunity likely depends on 
a large number of host-specifi c, environmental 
and vaccine-related factors, with modest prog-
ress in identifying PAMPs that promote epige-
netic modifi cations (Figure 3). Progress made in 
recent years, however, points to host receptors 
playing a particularly relevant role in acquiring 
phenotypic traits of trained immunity, coupled 

with a miniscule number of identifi ed antigens. 
For instance, muramyl dipeptide (MDP) found in 
mycobacteria, including BCG, has been shown 
to confer viral protection in a nucleotide-bind-
ing oligomerization domain-containing protein 
2 (NOD2) and IFN-β-mediated fashion [37], [140]. 
MDP treatment of cell lines before or after infec-
tion induces NF-κB and mitogen-activated pro-
tein kinase (MAPK) cascades, with potential rel-
evance with immunosuppressive infections with 
pathogens such as SARS-CoV-2 [139], [141]. In 
fact, in vitro pre-treatment of fi broblasts with 
MDP leads to human cytomegalovirus (HCMV) 
suppression upon NOD2 ligation; an outcome 
that is IFN-β dependent and suggestive of the 
relevance of NOD2 in viral infections  [142], [143]. 
Considering that both DNA and RNA viruses 
and their corresponding PAMPs are NOD2 ago-
nists, modifi cations of genes associated with 
NOD2 signalling may be particularly relevant for 
the innate immune response to SARS-CoV-2, 
assuming a priori acquisition of trained pheno-
types [140]. Furthermore, basal expression levels 
of NOD2 are higher in macrophages and mono-
cytes in contrast to fi broblast, therefore NOD2 
mediated signalling is likely more pronounced 
in these cells. Of course, this increased potency 
may translate to increase effi ciency with regards 
to trained immunity. 

NOD2 signalling leads to IκB kinase complex 
(IKK) activation in order to degrade the inhibitory 
IκBα protein. Synergic IFN-γ and MDP signalling 
leads to increased IKK activation, thereby signifi -
cantly reducing IκBα levels in a STAT1 indepen-
dent fashion [144]. Though understanding of IKK 
regulation is incomplete, it is known that TNF-α 
negatively regulates IKK activity by C-terminus 
phosphorylation of the IKKβ subunit [28]. Taking 
this into consideration, it is not diffi cult to infer 
that BCG-induced TNF-α may render the BCG 
vaccine inadequate for therapeutic purposes 
in COVID-19. A possible way out of this conun-
drum may lie in the heterogenous BCG-induced 
cytokine profi les across different populations, 
which opens the possibility of tailoring different 
BCG strains in accordance to the populational 
response [113]. Evidence supporting this sugges-
tion may be extrapolated from the work of Klein-
nijenhuis and others, where BCG-induced trained 
immunity of human monocytes was achieved in 
a NOD2 and Rip2 dependent manner [115], [145], 
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[146]. Strikingly, their work demonstrated redun-
dancy of TLR2 and TLR4 in this process, though 
it is likely that other mechanisms take part in this 
process that were simply not considered in the 
work. Considering that SARS-CoV-2 likely blocks 
IκB dissociation from NF-κB, it would be inter-
esting to see whether NOD2-dependent trained 
immunity entails phenotypes that are more resil-
ient to this tactic. Redundancy of TLR2 and TLR4 
does not exclude the roll of TLRs in trained immu-
nity, but rather emphasize the complexity and 
heterogeny of the mechanisms behind it.

Figure 3. Different cells of the innate immune system can undergo cytokine/antigen-stimulat-
ed epigenetic changes that may induced trained immunity. Common myeloid progenitor cells 
may also be stimulated, thereby differentiating into trained phenotypes. Abbreviations: MDP 
– muramyl dipeptide, IFN-γ – Interferon Gamma, TLR – Toll Like Receptor, NOD2 – Nucleotide-
binding oligomerization domain-containing protein 2

A Model of Heterologous Adaptive Immunity for 
SARS-CoV-2 Infections
Vaccines were initially considered to eventuate in 
immune responses precisely tailored towards the 
pathogen-associated antigen contained within 
the vaccine. Canonically, once the phagocytic 
cells engulf an antigen/pathogen, they migrate 
to proximal lymph nodes and present pathogen-
associated peptides (epitopes) to naïve T cells 
via the type I/II major histocompatibility com-
plex (MHC I/II). In turn, this leads to T and B cell 
priming, followed by their clonal expansion. The 
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traditional interpretation of adaptive immune 
memory infers that educated lymphocytes are 
specifi c only for the epitopes presented by way 
of MHC molecules. Whilst this specifi city, indeed, 
is predominantly present in the human immune 
system, a closer inspection of T cell reactivity 
reveals evidence of heterogenicity, colloquially 
termed “heterologous immunity”. The “off tar-
get” vaccine effects that give rise to heterologous 
immunity lead improved responses to unrelated 
pathogens and immunological tolerance in auto-
immune conditions, though negative effects have 
also been documented [145], [147]–[151]. Specifi c 
mechanisms behind heterologous immunity are 
poorly understood, however epigenetic program-
ming, cross-reactivity between epitopes and 
changes in metabolic profi les of lymphocytes, 
likely play major roles [152]–[155].  

Immunological Cross-reactivity of T Cells
APCs present pathogen-associated epitopes 
by way of MHC I and II to CD8+ and CD4+ T cells 
respectively, in the form of short amino acid 
sequences (MHC I: 8-11, MHC II: 13-17). Hitherto 
proposed to depend on the presentation of such 
conserved linear sequences by clonal selection 
theory, T cell reactivity evidently extends towards 
completely unrelated antigenic determinants 
presented from the MHC antigen-binding groove 
[152]–[155] (Figure 4). Considering that the ami-
no acid sequences that garner heterologous T 
cell reactivity are modestly homologous, regular 
immunological cross-reactivity may be possible 
not only for unrelated infections, but detrimen-
tal in the context of autoimmunity [156], [157]. 
The root of this heterology is poorly understood, 
though several plausible mechanisms have been 
suggested, all of which may, singularly or syner-
gistically, share responsibility for this phenom-
enon. Though heterologous immunity has thus 
far been documented in the context of viral infec-
tions, BCG vaccination may indirectly lead to het-
erology through induction of cytokine secretion.

Phenotypic alterations that are to be observed 
when discussing cross-reactivity, are at the res-
olution of the T cell receptor (TCR). TCRs are 
heterodimers comprised of subunits TCRα and 
TCRβ, though approximately 5% of human TCRs 
are comprised of TCRγ and TCRδ. Expression 
of TCRs and Ig chains on the surface of T cells 
is controlled by a mechanism known as allelic 

exclusion, with their expression correspond-
ing to a single allelic copy [16]. This ensures 
that the modus operandi of T and B cell priming 
is that of clonal selection, the benefi t of which 
entails avoidance of autoimmunity by way of high 
specifi city [13]. However, biallelic expression of 
TRC and Ig kappa (κ) chain (Igκ) has been doc-
umented in T cells, and correlated with affi nity 
for a broader spectrum of antigens [13], [159]. Of 
course, this alone cannot be attributed to cross-
reactivity, as heterogenicity in T and B cell ligand 
receptor binding is now understood as putative 
[17].  Interestingly, incomplete allelic exclusion 
of the TCRα chain can lead to expression of two 
distinct TCRs, thereby increasing the likelihood of 
cross-reactivity [18].  

Permissive and repressive epigenetic control 
of T cells, though an integral part of the canonical 
adaptive response, very likely extend towards the 
facilitation of heterologous immunity in the con-
text of TCRs and surface Ig [147], [151], [160]–[166]. 
Though trained immunity is independent from T 
and B cells, heterologous immunity relies on the 
canonical relationship between the two compo-
nents of the immune system. Perhaps charac-
terised with heterogeny, BCG-induced cytokine 

Figure 4. Cross-reactive lymphocytes can respond to different 
antigen determinants presented on the MHC grooves. Though 
T cells are most prominently known for cross-reactivity, B cells 
may also be cross reactive [158]. Abbreviations: MHC – Major 
Histocompatibility Complex
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expression profi les predominantly include IFN-γ, 
which in turn stimulates macrophages and mono-
cytes to secrete numerous cytokines, including 
IL-15. This cytokine regulates survival of T cells 
in the absence of antigens, either through induc-
tion of apoptosis or division [167]. It is possible 
that epigenetic alterations that occur upon BCG 
vaccination may influence permissiveness of the 
chromatin regions that corresponds to regulatory 
regions of the IL-15 gene, though this remains to 
be determined. In any case, the influence of BCG 
on heterologous immunity is likely predominantly 
mediated via innate immune cells. The threshold 
for TCR activation is lowered in effector/memory 
CD8+ cells through the expression of TLR 1/2/6 
and 6 are respectively. Considering that TLRs 
are important receptors in BCG recognition, this 
opens the possibility of epigenetic reprogram-
ming as a result of TLR signalling. 

Mycobacterial Activation of Bystander CD8+ Cells
Activation of bystander CD8+ cells, interest-
ingly enough, is independent of TCRs, yet heav-
ily dependent on secretion of IL-15, which BCG 
vaccination may indirectly induce [4]. Bystand-
er activation of CD8+ have been documented as 
the main sources of IFN-γ along with stimulat-
ed NK cells in melioidosis caused by Burkhold-
eria pseudomallei [2]. Furthermore, enhanced 
expression of IFN-γ mRNA was documented in 
mouse models, however the study that reports 
this used and experimental M. avium model [3]. 
In spite of this, homologies between BCG and M. 
avium antigens may evoke similar, if not identical, 
T cell responses. Interestingly, virally activated 
CD8+ exhibit strong affi nity towards granulomas 
induced by BCG, though this has thus far only 
been documented for immunodefi cient mice, and 
it is unclear whether BCG activation of T cells 
would have the same effect on viral infections [1]. 
In the absence of more comprehensive studies to 
draw a conclusion from, it may only be cautiously 
proposed that BCG-induced IL-15 secretion likely 
influences bystander CD8+ T cell activation. 

Though currently available evidence is some-
what suggestive of a relationship between non-
specifi c T cell activation and BCG immunization, 
comprehensive work lies ahead in determining 
whether the vaccine may induce a CD8+ cell phe-
notype that could contribute to better outcome 
with SARS-CoV-2. Considering that BCG contains 

a large number of highly diverse antigens, it is not 
surprising that T cells induced by BCG vaccina-
tion are quite broad in epitope specifi city [110], 
[115], [168]. Per contra, excessive T cell cross-re-
activity may lead to autoimmunity, thereby mak-
ing the heterologous immunity narrative a dou-
ble-edged sword [13]–[16], [18], [19]. Recently 
CD4+ T cells cross-reactive to SARS-CoV-2 have 
been detected in COVID-19 patients, though the 
exact implications of this remain unclear, and are 
likely population-specifi c [169]. However, it has 
been proposed that their presence could poten-
tially reduce viral loads in both the lungs and the 
upper respiratory tract upon infection.  

Non-specifi c Immunomodulatory Effects of the 
BCG Vaccine
Reports of non-specifi c benefi ts of BCG vac-
cination on other infectious diseases has seen 
a steady increase in recent years, correlating 
the vaccine with reduced mortality rate among 
infants, along with adjuvant-like effects on oth-
er unrelated childhood vaccines [170]. Benefi cial 
effects of BCG on non-mycobacterial infections 
is colloquially thought to be mediated by innate 
immune memory or heterologous lymphocyte 
activation [30], [171], due the absence patho-
gen-specifi c antibody epitopes in mouse stud-
ies where the vaccine conferred a better outcome 
in infections with Salmonella typhimurium and 
challenges with Plasmodium spp. and Babesia 
[172]. Perhaps the most striking evidence regard-
ing non-specifi c BCG benefi t is the improved 
antibody response to oral polio vaccine boost-
ing detected in patients who were also given BCG 
at the time of booster administration [173], [174]. 
Thus, it is likely that the benefi cial effects of the 
BCG vaccine vary concordantly to the strain of 
BCG and the immunogenetic background of the 
host. For instance, an Australian study conduct-
ed on 56 BCG-vaccinated and 52 BCG nonvacci-
nated infants, uncovered higher titters of IgG with 
epitopes for Haemophilus influenzae type B poly-
saccharides, pneumococcal capsular polysac-
charide PAMPs and tetanus toxoid (TT) [175]. Per 
contra, a randomized study on new-borns in Den-
mark found that a reduction in infant hospitaliza-
tions was only for cases where the mothers were 
also BCG vaccinated [176], [177]. 

Non-specifi c BCG effects do not shy away 
from the domain of respiratory viral infections, 
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where benefi cial effects of BCG continue to be 
reported, however comprehensive understand-
ing of this puzzling occurrence is modest at best 
[8], [31], [120]. Although a number of different BCG 

strains exist and continue to be regularly used, 
there is very limited work on the effi cacy con-
ferred by each different strain, both in tuberculo-
sis prophylaxis and non-specifi c effects in non-

Table 1. Some currently ongoing clinical trials regarding the correlation of the BCG vaccine and reduced risk of COVID-19 (https://
clinicaltrials.gov/)

Title Status Interventions Locations
Reducing Health Care 
Workers Absenteeism 
in Covid-19 Pandemic 
Through BCG Vaccine

Active, not 
recruiting

Drug: BCG Vaccine –
Drug: Placebo –

Jeroen Bosch ziekenhuis, Den Bosch, Brabant,  –
Netherlands
Canisius Wilhelmina Ziekenhuis, Nijmegen, Gelderland,  –
Netherlands
Radboud UMC, Nijmegen, Gelderland, Netherlands –
Sint Maartenskliniek, Nijmegen, Gelderland,  –
Netherlands
Noordwest Ziekenhuisgroep locatie Alkmaar, Alkmaar,  –
Noord Holland, Netherlands
Hagaziekenhuis, Den Haag, Zuid-Holland, Netherlands –
Leiden University Medical Center, Leiden, Zuid-Holland,  –
Netherlands
Erasmus Medical Center, Rotterdam, Zuid-Holland,  –
Netherlands
University Medical Center Utrecht, Utrecht, Netherlands –

Reducing COVID-19 
Related Hospital 
Admission in Elderly by 
BCG Vaccination

Active, not 
recruiting

Biological: BCG vaccine –
Biological: Placebo –

Radboud University, Nijmegen, Gelderland, Netherlands –
UMC Utrecht, Utrecht, Netherlands –

BCG Vaccination for 
Healthcare Workers in 
COVID-19 Pandemic

Active, not 
recruiting

Biological: Bacille Calmette- –
Guérin (BCG)
Other: Placebo Comparator –

TASK Foundation, Cape Town, Western Cape, South  –
Africa

BCG Vaccination to 
Protect Healthcare 
Workers Against 
COVID-19

Active, not 
recruiting

Drug: BCG Vaccine –
Drug: 0.9%NaCl –

St Vincent's Hospital, Sydney, Sydney, New South  –
Wales, Australia
Prince of Wales Hospital, Sydney, New South Wales,  –
Australia
Sydney Children's Hospital, Randwick, Sydney, New  –
South Wales, Australia
The Children's Hospital at Westmead, Sydney, New  –
South Wales, Australia
Westmead Hospital, Sydney, New South Wales, Australia –
Royal Adelaide Hospital, Adelaide, South Australia,  –
Australia
Women's and Children's Hospital, North Adelaide, South  –
Australia, Australia
Royal Children's Hospital, Melbourne, Victoria, Australia –
Epworth Richmond, Melbourne, Victoria, Australia –
Monash Health- Monash Medical Centre, Melbourne,  –
Victoria, Australia
and 26 more –

Prevention, Effi cacy 
and Safety of BCG 
Vaccine in COVID-19 
Among Healthcare 
Workers

Active, not 
recruiting

Biological: BCG vaccine –
Other: Placebo –

Hospital Universitario "José E. González", Monterrey,  –
Nuevo León, Mexico

BCG Vaccine in 
Reducing Morbidity 
and Mortality in Elderly 
Individuals in COVID-
19 Hotspots

Active, not 
recruiting

Biological: BCG vaccine  –
(Freeze-dried)

Tuberculosis Research Centre, Chennai, Tamilnadu,  –
India

Effi cacy and Safety of 
VPM1002 in Reducing 
SARS-CoV-2 (COVID-
19) Infection Rate and 
Severity

Active, not 
recruiting

Biological: VPM1002 –
Other: Placebo –

University Health Network, Toronto, Ontario, Canada –
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mycobacterial infectious diseases. There is some 
evidence indicating that BCG decreases the mor-
bidity of acute lower respiratory tract infections 
caused by respiratory syncytial virus (RSV); this 
effect was observed in young children in Guin-
ea-Bissau and in a study that included elderly 
people, where a decrease in incidence of acute 
upper respiratory tract infections was report-
ed [178]. However, it should be noted that the 
study on elderly people, which did yield positive 
results in favour of the non-specifi c protection of 
BCG against viral infections, was conducted by 
administering the vaccine once a month for three 
months, thereby warranting cautious interpreta-
tion. A signifi cant reduction in respiratory tract 
infections was also reported in a study of BCG-
vaccinated adolescents in the South-African pop-
ulation [179]–[181]. Although the results of these 
studies are in favour of non-specifi c prophylactic 
BCG effects in viral infections, therapeutic effects 
of the vaccine have also been reported, specifi -
cally regarding patients infected with the human 
papilloma virus (HPV) [182]. 

Perhaps most interesting for the COVID-
19 pandemic is a study that reported improved 
antibody titters for the influenza A strain (H1N1) 
that caused the 2009 “swine flu” epidemic, when 
BCG was administered prior to the H1N1 vac-
cine. The enhanced protection was hallmarked 
by an improved production of IFN-γ for the H1N1 
study [183], contrasted with another study that 
reported that BCG-induced IL-1β production is the 
likely mechanism of conferred protection during 
viral infections [151]. However, the same IFN-γ-

mediated protection was observed for the vac-
cinia virus in infected mice upon BCG vaccination, 
which promoted the secretion of this cytokine 
by CD4+ T cells [184]–[186]. IL-1β plays a role in 
inflammatory responses, apoptosis, cell differen-
tiation and proliferation, and has shown to play an 
important role in viral immunity [187]. Improve-
ment of non-specifi c Th1 and Th17 immune 
responses, along with enhanced innate trained 
immunity, has also been reported in BCG-immu-
nized patients, with satisfactory durations [188].  

Implications for the COVID-19 Pandemic
At the present moment, there are a number of 
clinical trials aimed at evaluating the presumed 
protective effects of the BCG vaccine towards 
COVID-19, some of which are summarized in 
Table 1.  It is likely, however, that BCG strain will 
have an impact on its effects on COVID-19 and 
infections with SARS-CoV-2, and trials are cur-
rently underway for the purpose of assessing 
which strain, if any, is adequate for implemen-
tation in the battle against COVID-19. Thus far, 
the candidates of interest are the Danish and 
Tokyo strain, although it currently remains utterly 
unclear what the immunological basis for their 
difference in effi cacy might be [106].  Frequent-
ly used BCG strained along with their charac-
teristics are summarized in Table 2 [189], [190]. 
Virulence of the BCG strain was hypothesized to 
play a role in protection against Mycobacterium 
tuberculosis, potentiating the assumption that 
the trials will eventuate in varying effi cacy across 
BCG strains for COVID-19 [43]. There is an obvi-

Table 2. Summarization of frequently used BCG vaccines and their characteristics. Abbreviations: CRR, com-
plete response rate; NA, not applicable

Strain Mean CRR Weight 
(mg)

Recommended
dose (cfu)±

Secretion of lipid 
virulence factors

Secretion of MPB64/
MPB70 and MPB8

RIVM/1 60 80 2-30 x 108 NT Unknown
Romanian 64 NA NA NT Unknown
Copenhagen 67 NA NA Yes Absent/Present
S. African 69 NA NA NT Unknown
A. Frappier 60 (39–100) NA NA Yes Absent/Present
Glaxo 65 (53–88) NA NA No Absent/Present
Tice 71 (56–82) 12.5 2-8 x 108 Yes Absent/Present
Pasteur 74 (40–80) NA NA Yes Absent/Present
Tokyo 77 (63–84) 80 0.4-0.5 x 108 No Present/High
Connaught 79 (70–92) 81 1.8-15.9 x 108 NT Unknown
Moreau RdJ 90 80 0.04 x 108 No Present/High
Moscow 90.5 120 3-57 x 108 Yes Present/High
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ous need to bridge the gap between fi ndings in 
basic immunobiology and clinical application, 
which will hopefully occur upon the conclusion 
of these clinical trials. Since COVID-19 vaccines 
are still not internationally widely available to all 
countries, the potential for utilization of existing 
vaccine technologies in mitigating some of the 
fallout caused by COVID-19, could signifi cantly 
improve patient care in countries where COVID-
19 vaccines are scarcely available.

Concluding Remarks

Although the mechanisms of action remain 
unclear, non-specifi c effects of BCG have been 
reported to confer a degree of protection against 
viral infections and non-mycobacterial bacte-
rial infections. It is likely that BCG predominant-
ly influences innate immune memory, causing 
epigenetic modulation of monocytes and mac-
rophages, and inducing secretion immunomodu-
lating cytokines. Effects on heterologous immu-
nity, however, can currently only be described as 
indirect, particularly through induction of IL-15 
secretion. Though heterologous immunity does, 
indeed, depend on adequate pathogen process-

ing by the innate immune system, BCG-induced 
bystander CD8+ activation may boost the innate 
immune response through enhanced IFN-γ pro-
duction.

Although recent studies have shown that BCG 
promotes the Th1 and Th17 immune response, 
further studies should be directed at uncover-
ing whether such effects are dependent on BCG 
strain and the immunogenetic background of 
patients. Considering that BCG has been shown 
to increase titters of polysaccharide-specifi c IgG 
in bacterial infections, it is possible that the same 
might be true in the case of SARS-CoV-2 spike 
glycoprotein, which the virus uses to bind to cells 
expressing ACE2 and C-type lectins. Substantial 
evidence has mounted over the years in favour 
of non-specifi c benefi ts of BCG vaccination in 
a variety of other infectious and oncologic dis-
eases, further solidifying the plausibility of this 
model. However, the effects of this vaccine vary 
in accordance to BCG strain and likely a plethora 
of host-derived factors, most of which are incom-
pletely understood. In essence, trained and het-
erologous immunity are incredibly complex and 
multifaceted phenomena with proven therapeu-
tic potential, and could possibly confer improved 
outcome in asymptomatic SARS-CoV-2 infec-
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tions, or COVID19 disease. It is encouraging to 
see the number of clinical trials that are currently 
underway, tasked with resolving a lot of unclar-
ity regarding the issue of BCG-induced heterolo-
gous immunity. Though this work is concerned 
with providing a hypothetical model by which the 
BCG vaccine may induce non-specifi c protection 
against SARS-Cov-2 – based on studies con-
cerning other pathogens – we recognize the limi-
tations of all previous studies pertaining to this 
topic. Firstly, though this is a plausible immuno-
biological model, it largely based on in vitro and 
animal studies, with several prominent examples 
derived from human test subjects. Human stud-
ies concerning heterologous immunity tend to 
suffer from the issue of bias, and the potentially 
relevant host-derived intricacies influencing the 
ability of a vaccine to influence innate immune 
cell memory, is diffi cult to control for. Though our 
model holds plausibility, it should be understood 
as suggestive rather than defi nitive, and more 
work is defi nitely needed – one that bridges clini-
cal relevance and basic immunobiological stud-
ies – in order to derive a defi nitive conclusion. 
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