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The role of STAT3 in the colorectal cancer therapy
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abstRact

Colorectal cancer is a type of a malignant tumor in the digestive system and its incidence rate in the Unit-
ed States and the European Union increases by an average of 4.2% to 4.6% annually. Colorectal cancer is 
a common tumor affecting rather elderly than younger individuals. An increasing number of studies prove 
that deregulation of the signaling pathway and abnormal expression and activation of genes can be the main 
reason for the development of colorectal cancer. Signal transducer and activator of transcription (STAT3) is 
a transcription factor of signal transduction and transcriptional activation of target genes and plays impor-
tant roles in proliferation, differentiation apoptosis and other physiological processes. Several data confirm 
that abnormal activation of STAT3 is involved in the development of tumors. Identifying compounds that 
inhibit STAT3 is a promising strategy for cancer chemoprevention and treatment of colorectal cancer. In this 
review, the roles of STAT3 in pathogenesis and treatment of colorectal cancer are discussed.

Introduction

Colorectal cancer (CRC) is the second most 
common cancer diagnosed in women and the 
third most common in men. The prevalence of 
CRC increases at an average rate of 2.5% annu-
ally. Moreover, the incidence of CRC worldwide 
is predicted to increase to 2.5 million new cases 
in 2035 [1]. Epidemiological studies have shown 
the strong dependence of the disease incidence 
on gender, males, and increasing age. Addi-
tionally, diet, lifestyle, medications, smoking, 
obesity and a sedentary lifestyle were associ-
ated with an increased risk of CRC. Moreover, 
genetic changes may play a crucial role in CRC 
pathogenesis [2].

CRC develops through a multistage process 
characterised by the accumulation of aberrant 
protein expression, which results in the formation 
of tumour cells [3]. Recently, increasing attention 
has been focused on transcription factors con-
tributing to oncogenic signalling pathways such 
as signal transducer and activator of transcrip-
tion (STAT3) [4, 5]. Persistent STAT3 activation is 
described in several neoplasias, including CRC. 
Blocking STAT3 in cultured CRC cells inhibits cell 
proliferation and induces apoptosis [6]. Although 
STAT3 is required for the survival of normal intes-
tinal epithelial cells, long-term interference with 
STAT3 activation could promote gastrointestinal 
damage. Hence, STAT3 is a potential therapeutic 
target for CRC [7, 8].
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Structure of STAT3

STAT3 belongs to the STAT family proteins and 
contains six domains: N-terminal domain (ND), 
coiled-coil domain (CCD), DNA binding domain 
(DBD), the linker region, Src homology domain 
(SH2), and a C-terminal transcriptional activation 
domain (TAD) (Figure 1). The ND domain stabi-
lises the dimerised STAT3, promoting the forma-
tion of tetramers of two STAT3 dimers for more 
stable binding with DNA. The CCD domain medi-
ates STAT3 direct binding to the receptor and 
promotes STAT3 phosphorylation on the 705-
tyrosine site (Y705). The DBD domain initiates 
transcriptional activation of the target genes, 
while the SH2 domain plays a critical role in sig-
nal transduction. The TAD domain possesses 
conserved phosphorylation sites at Tyr705 and 
Ser727, and SH2 can recognise phosphotyrosine 
residues, thus are closely related to STAT3 acti-
vation [6, 9].

STAT3 possess four isoforms: STAT3α, 
STAT3β, STAT3γ, and STAT3δ, with STAT3α being 
the most common and consists of ND, CCD, DBD, 
Linker, SH2 and TAD domains. STAT3α is associ-
ated with the proliferation and transformation of 
cells [9].

Activation of STAT3

The classical STAT3 signalling pathway is acti-
vated through the binding of interleukins, cytok-
ines or growth factors to their corresponding cell 
surface receptors (Table 1).

In normal conditions, STAT3 is situated in 
the cytosol, dimerising and translocating to the 
nucleus after being activated via phosphoryla-
tion of the tyrosine705 residue. In the nucleus, 
it controls the transcription of several apoptotic 
and cell cycle regulatory proteins [10]. STAT3 can 
be activated through Janus kinase (JAK), Ras/
mitogen-activated protein kinase (MAPK) and 
non-receptor tyrosine kinase signalling pathways 
[11]. The JAK phosphorylates tyrosine residues 
on STAT3, especially at the Y705 site, leading 
to activation and dimerisation of STAT3, subse-
quent transport to the nucleus and binding to the 
GAS sequence for the initiation of the transcrip-
tion of target genes [12]. Ras-MAPK phosphory-
lates the serine residue in STAT3 on S727, which 
leads to STAT3 dimerisation and its translocation 
to the nucleus, it also binds to DNA sequences 
in the promoters of genes [13]. The non-receptor 
tyrosine kinases such as activated Src kinase and 
MAPK family members (p36, ERK, JNK), PKCδ, 

table 1. The inducers of STAT3 

Interleukins Cytokines Growth factors
IL-6,
IL-7,
IL-10,
IL-20

leukaemia inhibitory factor (LIF), –
ciliary neurotrophic factor (CNTF), –
interferon γ (IFN- γ), –
tumour necrosis factor (TNF-α), –
monocyte-1 chemotactic protein (MCP-1), –
macrophage inflammatory protein-1α (MIP-1α), –
stem cell factor (SCF), –
oncostatin M (OSM) –

epidermal growth factor receptor (EGFR), –
hepatocyte growth factor receptor (HGFR), –
fibroblast growth factor receptor (FGFR), –
platelet-derived growth factor receptor (PDGFR), –
insulin-like growth factor receptor (IGFR), –
vascular endothelial growth factor receptor  –
(VEGFR)

Figure 1. Structure of STAT3 protein. Functional domain: N-terminal domain (ND); coiled-coil domain (ccD); 
DNA binding domain (DbD); Src homology domain (sH2); C-terminal transcriptional activation domain 
(taD). Post-translational modification occurs at the 705-tyrosine site (Y705)
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mTOR phosphorylate STAT3 on S727 in the C-ter-
minal domain [14].

Additionally, STAT3 is also acetylated on 
a single lysine residue located at position 685 
by histone acetyltransferase p300. This acety-
lation regulates both transcriptional activity and 
homodimer stability. Other factors, such as UV 
radiation or sunlight, carcinogen, stress, smoke 
and infection are also known to play a significant 
role in STAT3 activation. STAT3 is negatively reg-
ulated by specific factors, including the suppres-
sor of cytokine signalling (SOCS) and the protein 
inhibitor of activated STAT (PIAS) [15, 16].

Role of STAT3 in the patho-
genesis of colorectal cancer

CRC cells and normal colon cells differ in their 
hallmarks. In normal cells, the activation of STAT3 
is rapid and transient, whereas, in CRC cells, 
abnormal activation of STAT3 accelerates CRC 
cell proliferation, blocks their differentiation and 
inhibits apoptosis which leads to the occurrence 
and development of CRC. Several studies showed 
that STAT3 activation contributes to cellular pro-
liferation and survival in the case of CRC. Per-
sistent activation of STAT3 induces upregulated 
expression of CyclinD1, c-Myc and survivin and 
accelerates cell cycle progression in colon can-
cers [17–19]. The STAT3 signalling pathway sup-
presses apoptosis in CRC through upregulation 
of the expression of anti-apoptotic proteins such 
as Bcl-2 (B-cell lymphoma-2), Bcl-xl (B-cell lym-
phoma-2-like 1), and Mcl1 (myeloid cell leukaemia 
sequence 1) to prevent apoptosis of CRC cells [20, 
21]. Inversely, inhibition of STAT3 decreases cell 
proliferation and promotes apoptosis in CRC [22]. 
Additionally, recent studies have demonstrated 
that increased phosphorylated STAT3 (phospho-
STAT3) expression was detected in patients with 
colorectal carcinoma. However, the prognostic 
value and clinicopathological parameters of pho-
shoSTAT3 expression in CRC remain undefined [2].

Tang et al. [23] reported that the posi-
tive expression of JAK1 and STAT3 proteins in 
patients with colon cancer was not associated 
with sex, age, tumour differentiation degree and 
neurovascular invasion, but was dependent on the 
clinical stage of cancer, tumour infiltration depth 
and lymph node metastasis. The survival time 

of CRC patients with positively-expressed JAK1 
and STAT3 proteins was significantly shorter 
compared to patients with negatively-expressed 
JAK1 and STAT3. Thus, the JAK/STAT signal may 
be used as a novel tumour marker and prognostic 
factor for the diagnosis, assessment and progno-
sis of colon cancer [23].

STAT3 promotes cell invasion by activating the 
transcription of matrix metalloproteinases, main-
ly MMP-2 and MMP-9. In the case of CRC, a cor-
relation between increased MMP-2 and MMP-9 
expression and a poor outcome has been proven 
[24]. Several studies refer to the utility of serum 
MMPs as markers for CRC invasion. Dragutinović 
et al. [25] confirmed the higher levels of MMP-2 
and MMP-9 proteins in the sera of patients with 
CRC compared to controls with no CRC. Addi-
tionally, Kryczka et al. [26] described the upreg-
ulation of MMP-2 expression in invasive CRC. 
The opposite effect was observed in the case of 
MMP-12, which is also called metalloelastase, 
which does not belong to any of the MMP sub-
families. According to the studies in animal and 
human models, increased MMP-12 expression is 
associated with both reduced tumour growth and 
increased overall survival [27, 28].

STAT3 activation can also contribute to angio-
genesis through its effects on vascular endotheli-
al growth factor (VEGF) [29]. However, there is still 
controversy in terms of the relationship between 
serum VEGF and VEGF receptor (VEGF-R) tumour 
expression in CRC [30]. Evidence from preclini-
cal and clinical studies indicates that VEGF is the 
predominant angiogenic factor in human CRC 
and is associated with the formation of metasta-
ses and poor prognosis [31].

The JAK/STAT/SOCS-signalling pathway plays 
a critical role in immune response and regulation 
of inflammation. Additionally, components of the 
pathway, such as STAT3, have been shown to 
promote cell growth and survival through impair-
ment of the expression of genes involved in 
apoptosis, cell cycle regulation and angiogenesis 
[32]. SOCS3 is an important signal inhibition fac-
tor in the JAK2/STAT3 pathway. The reduction or 
deletion of SOCS3 expression causes sustained 
activation of STAT3 in many malignant tumours 
[33]. Other studies indicate that posphoSTAT3 in 
CRC is higher than in surrounding tissues, where-
as the expression of SOCS3 is lower or absent 
in CRC tissues. The activation of this signalling 
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pathway promotes the transformation of colitis to 
CRC. SOCS3 protein inhibited the activation of the 
JAK/STAT3 pathway by negative feedback regula-
tion of tyrosine phosphorylation of STAT3, which 
inhibits the growth of tumour cells. STAT3 acti-
vation also promoted hypermethylation of SOCS3 
gene promoters in DLD1, HT-29 and SW480 can-
cer cells [34].

STAT3 as a target in CRC therapy

As STAT3 plays an important role in the develop-
ment of CRC, it could be used as an essential tar-
get in the diagnosis and treatment of CRC. These 
inhibitors are not implemented in clinical practice 
but are suggested to be useful. However, clinical 

studies are required to assess their usefulness, 
efficiency and potential anticancer activities.

Table 2 presents the chemical structure of 
potential inhibitors of STAT3. In this review, we 
focus on the representatives of different groups 
of compounds possessing the possible implica-
tions of targeting STAT3 in colon cancer. More-
over, the mechanism of STAT3activation is multi-
faced, thus Figure 2 presents the suggested ther-
apeutic intervention strategy in the STAT3 path-
way during CRC therapy.

Nowadays, STAT3 inhibitors can be classified 
as indirect and direct (Table 2). The indirect strat-
egy can block molecules and induce the STAT3 
pathway, indirectly inhibiting the signal transduc-
tion functions of STAT3, mostly through inhibit-
ing the function of JAKs, in turn, there are sev-

Figure 2. Therapeutic intervention strategy in the STAT3 signalling pathway for CRC therapy. Under physiological conditions, STAT3 
is localised in the cytoplasm and nucleus and can be activated by iL-6 and other cytokines, including TNF-α. In response to stimula-
tion of STAT3 by cytokines, JAK1 is usually involved in the dimerisation of STAT3, as well as nuclear transport and binding to DNA. 
Growth factors, like eGFR, veGFR, and non-receptor tyrosine kinases (src) can also stimulate STAT3. Activation of STAT3 is con-
trolled by inhibitors of cytokine signalling (sOcs) and protein inhibitors of active STAT, protein inhibitors of activated STAT (Pias). 
Signal transduction is initiated by dimerisation of glycoprotein 130 (gp130) due to the effect of growth factor or interleukin [36]. The 
activation of STAT3 can also be dependent on the functionality of the hypoxia-inducible factor 1-α (HIF-1α). Both STAT3 and HIF-1α 
are heat shock protein 90 (HsP90) client proteins, which transcribe veGF [37], eGF, iL-6R and tNF2
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table 2. Inhibitors of STAT3
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table 2. Continued

eral direct strategies according to different target 
domains, including the SH2 domain [35–37]. 

Indirect inhibitors

Natural inhibitors
salidroside is a glucoside extracted from Rhodi-
ola rosea [38], which inhibits the proliferation and 
cell cycle and reduces migration and invasion of 
colon cancer SW1116 cells through blocking the 
phosphorylation of JAK/STAT3 [39]. Moreover, Li 

and Chen [2017] suggest that salidroside down-
regulates phosphoSTAT3 in HCT116 cells, which 
is correlated with the induction of autophagy.

bufalin is a steroid isolated from Chinese 
toad venom, which inhibits JAK/STAT3 signalling 
through decreasing the level of phosphoSTAT3 and 
downregulates the Bcl-2 protein. Bufalin blocks the 
proliferation of colon adenocarcinoma SW620 cells 
and induces G2/M cell cycle arrest of these cells 
[40, 41]. Similar results were reported by Qiu et al. 
[42], that bufalin reduces the viability of HCT116 
cells in a dose- and time-dependent manner.
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berberin is an alkaloid isolated from Hydrastis 
canadensis and can decrease phosphorylation of 
JAK and STAT3 proteins in CRC cells [43]. Other 
studies demonstrated that berberin affects the 
expression of MMP-2 and MMP-9, but the mech-
anism has not been elucidated [44, 45]. Liu et al. 
[43] argue that berberin reduces COX-2/PGE2 
levels, consequently decreasing JAK2/STAT3 
activation, leading to dampened expression of 
downstream target genes MMP-2 and MMP-9, 
reducing invasiveness and metastasis in CRC. 
A similar effect was presented by Hu et al. [46] 
and Hallajzadeh et al. [47], where the reduction in 
the JAK2/STAT3 signalling as a consequence of 
attenuating the COX-2/PGE2 expression by ber-
berin was observed.

cryptotanshinone is a quinoid diterpene iso-
lated from Salvia miltiorrhiza Bunge. It inhibits 
the activation of STAT3 pathways through inac-
tivating phosphorylation of STAT3 in SW480, 
HCT116 and LOVO CRC cell lines. Moreover, cryp-
totanshinone attenuates the expression of Bcl-2, 
CyclinD1 and survivin in HCT116 and SW480 cells. 
The mechanism of action of cryptotanshinone by 
direct interaction with STAT3 can also rely on the 
inhibition of EGFR phosphorylation at higher dos-
es of cryptotanshinone [48].

bruceantinol is a triterpenoid isolated from 
Brucinea javanica, which reduces the level of phos-
phorylated STAT3 and downstream target expres-
sion of Mcl-1, c-Myc, and survivin in vitro. A reduc-
tion of phosphoSTAT3 was observed in mice with 
CRC xenografts treated with bruceantinol [49].

trichostatin a is a hydroxamic acid produced 
by Streptomyces hygroscopicus and an inhibi-
tor of class I and II histone deacetylases. The 
hyperacetylation of histones is associated with 
SOCS1 and SOCS3 promoters in CRC cells [50]. 
According to Xiong et al. [50], trichostatin A can 
increase the level of SOCS1 and SOCS3 expres-
sion in SW1116 and HT-29 colon cancer cell lines. 
Consequently, it negatively modulates the JAK2/
STAT3 pathway, subsequently downregulating 
Bcl-2 and survivin and decreases growth and 
apoptosis of CRC cells.

Ursolic acid is a pentacyclic triterpenoid, 
abundant in apples, pears and prunes [51]. Stud-
ies conducted by Wang et al. [52] confirmed that 
ursolic acid selectively inhibits STAT3 phospho-
rylation at Y705 in CRC cell lines, HT-29, HCT116 
and SW480. Moreover, some studies confirmed 

the antiapoptotic properties of ursolic acid in 
HT-29 cells via inhibition of Bcl-xl, Bcl-2 and 
Cyclin D1 expression [53, 54].

Resveratrol is a plant polyphenol naturally 
occurring in grapes, red wine, and peanuts [55]. 
It can inhibit cell proliferation and promote cell 
apoptosis via the STAT3 signalling pathway in 
DLD1 and HCT15 colon cancer cells. Li et al. [56] 
demonstrated that resveratrol inhibits cell growth 
in CRC by inhibiting the serine/threonine-pro-
tein kinase AKT and its downstream signalling 
targets. AKT serves as an upstream regulator 
of STAT3. Additionally, the expression of phos-
phorylation of STAT3 at the Tyr705 site was sup-
pressed by treatment with resveratrol in a dose-
dependent manner [56].

apigenin is a type of flavone identified in sev-
eral types of berries and vegetables, which inhib-
its the nuclear localisation of STAT3 through the 
reduction of the expression of phosphoSTAT3 
(Tyr705) in HCT116 colon cancer cells [57].

Genistein is a major isoflavone in soy and soy-
based food products that are regularly consumed 
in Asian countries [58]. Genistein promotes apop-
tosis in HT-29 colon cancer cells by modulating 
caspase-3 and p38 MAPK signalling pathway 
[59]. Genistein also abolished the activation of 
STAT3, preventing translocation into the nucleus 
by downregulating the activity of JNK [60].

Myricetin is a common dietary flavonoid 
abundantly found in plants. It deregulates the 
JAK1/STAT3 signalling pathway that controls 
many processes such as cell growth, differen-
tiation, senescence and apoptosis [61]. Myrice-
tin directly binds with the catalytic domain of the 
JAK1 protein and inhibits the phosphorylation of 
STAT3 and JAK1. Moreover, myricetin has been 
found to increase EGF-induced autophosphoryla-
tion of EGFR at Tyr845, Tyr992, Tyr1045, Tyr1068, 
and Tyr1173, as well as inhibit the autophospho-
rylation of endogenous EGFR sites. The results 
indicated that myricetin exerts its chemopreven-
tive effect by directly interacting with JAK1 and 
STAT3 proteins [62].

Oroxylin a is an O-methylated flavone found 
in the roots of Scutellaria baicalensis. It inhib-
its colitis-associated carcinogenesis through 
modulating the IL-6/STAT3 pathway in AOM/
DSS mouse model and HCT116 cells. This study 
confirmed that oroxylin A induces Bax and Bcl-2 
binding in colon cancer Caco-2 cells [57].
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sophoraflavanone G is a plant material isolat-
ed from Sophora leachiana, S. exigua or S. moor-
croftiana. S. pachycarpa or S. flavescens. Treat-
ment of HCT116 cells with this small-molecule 
significantly inhibited tyrosine phosphorylation 
of STAT3, as confirmed by western blot analy-
sis, where the level of phosphoSTAT3 protein was 
decreased in comparison to the control [63].

The ethanol extract of Prunella vulgaris L., 
termed spica Prunellae, is a well-known tradi-
tional Chinese formulation, which can inhibit the 
STAT3 phosphorylation of Y705, increase the 
Bax/Bcl-2 ratio, reduce Cyclin D1 and subse-
quently inhibit CRC cell proliferation and promote 
apoptosis [64–66].

synthetic inhibitors
benzylidenetetralones are synthetic, cyclic chal-
cone analogues [67]. Natural and synthetic chal-
cones have also shown anticancer activity caused 
by their inhibitory potential against targets such 
as the JAK/STAT signalling pathway [68]. Ben-
zylidenetetralones decrease the expression of 
Bcl-xl, consequently inducing cell cycle arrest and 
apoptosis in the HCT116 CRC cell line [67].

Flubendazole is a well-known anthelmintic 
drug, which blocks IL6-induced nuclear trans-
location of STAT3, leading to the inhibition of 
the transcription of STAT3 target genes, such 
as MCL1 and VEGF. Flubendazole inhibition of 
STAT3 phosphorylation is partly dependent on 
the upstream kinases JAK2 and JAK3. Also, 
flubendazole reduces the expression of P-mTOR, 
P62, Bcl-2, and upregulates Beclin1 and LC3-I/II, 
major autophagy-related genes, thereby inducing 
potent cell apoptosis in CRC cells. Furthermore, 
flubendazole displays a synergistic effect with 
the chemotherapeutic agent 5-fluorouracil in the 
treatment of CRC [69].

Nifuroxazide is a nifuran antibiotic, which 
downregulates the phosphorylation of tyrosine 
residues (Y705) on STAT3 as well as impairing 
the expression of MMP-2 and MMP-9 in HCT116 
and HT-29 human CRC cell lines [70].

small-molecule inhibitors
aG-490 is a pharmacological inhibitor of kinase 
JAK2, which decreases VEGF secretion in SW1116 
and HT-29 cells, functioning likes the JAK/STAT3 
pathway in angiogenesis [71]. Additionally, the 
downregulation of phosphoJAK1, phosphoJAK2 and 

phosphoSTAT3 was observed after treatment with 
AG490. This leads to a decline in Bcl-2 and survivin 
expression [71,72]. Furthermore, STAT3 inhibition by 
AG-490 treatment has been found to increase cell 
sensitivity to chemotherapeutic agents [73].

Direct inhibitors

Natural inhibitors
curcumin is a natural polyphenol, the yellow pig-
ment in Curcuma longa L. It reduces binding of 
STAT3 to DNA in CRC cells [74], thereby abrogating 
its phosphorylation and nuclear translocation, as 
well as the subsequent expression of target genes. 
This approach has mainly focused on targeting 
the SH2

 
domain, an important domain by which 

STAT3 maintains its biological functions [75].

synthetic inhibitors
Napabucasin was the first compound to under-
go a series of clinical trials (NCT03522649, 
NCT02753127, NCT01776307, NCT02851004, 
NCT01830621, NCT02641873) to determine its 
efficacy and safety in patients with metastatic CRC 
[76]. A napabucasin derivative with a 2-(piperidin-
1-yl)ethylamino-group substituted at the R2 
position significantly inhibited tumour growth in 
a mouse model. Molecular docking suggested that 
this compound bound to the SH2 domain of STAT3 
in CT26 colon carcinoma mouse cell line [77].

small-molecule inhibitors
Ganetespib is a small-molecule inhibitor of heat 
shock protein 90 (HSP90) activity. Ganji et al. [78] 
demonstrated that ganetespib inhibits STAT3 and 
disrupts angiogenesis of CRC cell lines HCT116 
and HT-29, also downregulating the expression 
of VEGF transcription factors, hypoxia-inducible 
factor 1-α (HIF-1α) and STAT3. Both STAT3 and 
HIF-1α are dependent on HSP90 and transcribe 
VEGF, therefore, HSP90 inhibition by ganetespib 
also affects the expression of HIF1α and STAT3, 
leading to decreased transcription of pro-ang-
iogenic cytokines such as VEGF in CRC [79].

Conclusions

STAT3 is an important signal transducer and 
activator of transcription which is widely involved 



Journal of Medical Science 2020;89(3) 195

in numerous cellular physiological processes, 
such as proliferation, differentiation and apopto-
sis. Available data indicate that STAT3 is involved 
in the pathogenesis of colorectal cancer, hence, 
it may be useful in colorectal cancer diagnosis, 
treatment and prognosis. However, further stud-
ies are needed to determine if STAT3 is of use in 
cancer diagnosis and prognosis of disease devel-
opment, as well as the possible beneficial effects 
of STAT3 targeted therapy. There is an increasing 
evidence STAT3 inhibitors, such as phytochemi-
cals or synthetic compounds, may be potential 
therapeutics for colorectal cancer, so further 
research regarding the inhibitory properties of 
natural or synthetic compounds is justified.
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