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Indications and timing for genetic testing 
in ovarian cancer
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ABSTRACT

Modern management of ovarian cancer (OC) relies on molecular diagnostics, with genetic testing playing 
a central role in therapeutic decisions. High-grade serous ovarian cancer (HGSOC) is frequently associated 
with mutations in the BRCA1 and BRCA2 genes, as well as other alterations within the homologous recombina-
tion repair (HRR) pathway.  The identifi cation of pathogenic variants is critical for selecting patients eligible for 
treatment with poly (ADP-ribose) polymerase inhibitors (PARPi), which signifi cantly improve progression-free 
survival, especially in individuals with BRCA mutations and homologous recombination defi ciency (HRD).

Current guidelines recommend BRCA testing at diagnosis for all patients with HGSOC, followed by HRD 
testing. Various techniques are used to assess genetic alterations and HRD status. Commercial tests assess 
mutations in genes in HRR pathways, genomic instability, or HRR functional status to quantify HRD.

Despite the availability of these assays, challenges remain regarding test standardisation, predictive 
accuracy, and cost-effectiveness. Moreover, emerging research highlights the potential for artifi cial intel-
ligence (AI) to enhance molecular profi ling, utilising whole-slide imaging (WSI) and deep learning to predict 
homologous recombination defi ciency (HRD) and other tumour characteristics.

The integration of molecular subtypes, as defi ned by The Cancer Genome Atlas (TCGA), into routine clin-
ical practice holds promise for tailoring therapy beyond BRCA or homologous recombination defi ciency 
(HRD) status. As the fi eld advances, comprehensive genetic testing combined with AI-driven analytics may 
become the cornerstone of precision oncology in ovarian cancer.

Introduction

The aetiology of ovarian cancer (OC) involves 
a combination of genetic, reproductive, hormon-

al, and environmental factors. Genetic predispo-
sitions, particularly mutations in the BRCA1 and 
BRCA2 genes, play a signifi cant role in its devel-
opment [1]. High-grade serous epithelial ovarian 
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cancer (HGSOC) is the most common and aggres-
sive subtype. Characteristic molecular abnor-
malities in HGSOC include germline and somatic 
mutations in the BRCA1 or BRCA2 genes, BRCA1 
promoter methylation, and alterations in other 
genes involved in DNA repair through homolo-
gous recombination (HR) [2,3]. TP53 gene muta-
tions are found in up to 96% of HGSOC cases [4]. 
Among many identifi ed genes whose alterations 
are related to OC pathogenesis are NF1, CDK12, 
RB1, CHEK2, RAD51, BRIP1, PALB2, and CCNE1 
[5–11]. Alterations in BRCA and other genes asso-
ciated with homologous recombination play 
a crucial role in determining appropriate adjuvant 
therapy [12] and genetic counselling for affected 
individuals' families [13].

Modern OC treatment is not possible without 
genetic diagnostics. Recent targeted therapies, 
such as PARP inhibitors (PARPi), exploit genet-
ic disorders associated with BRCA mutations 

and other genes involved in DNA repair through 
homologous recombination [14,15]. This under-
scores the importance of research on molecular 
disorders in OC and the ongoing efforts to inte-
grate these fi ndings into clinical practice. This 
study aims to summarise the genetic diagnostics 
used in managing OC.

Relevance of molecular testing 
in treatment planning

The management of OC depends on the stage of 
the disease. Primary debulking surgery is per-
formed for operable tumours, followed by adju-
vant chemotherapy, potentially combined with an 
antiangiogenic agent – bevacizumab. If complete 
cytoreduction is not possible, treatment begins 
with neoadjuvant chemotherapy, followed by 
interval debulking surgery [16,17]. Patients with 

Figure 1. Ovarian cancer treatment algorithm including molecular diagnostics. Treatment of ovarian cancer must be preceded 
by histopathological confi rmation. Molecular diagnostics should be performed on the initial biopsy, which should contain a 
suffi cient amount of tumour tissue—at least 30% tumour cells—to ensure material for analysis. This enables the assessment 
of eligibility for PARP inhibitor therapy. The result should ideally be available by the third cycle of chemotherapy, as this is 
when the decision is made regarding the use of the PAOLA-1 treatment regimen. Peripheral blood analysis is used to determine 
whether the detected mutations are of somatic or germline origin.
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advanced disease (FIGO III, IV) who have respond-
ed to platinum-based chemotherapy are eligible 
for maintenance therapy with poly (ADP-ribose) 
polymerase (PARP) inhibitors [14,15]. Patients 
with BRCA1/2 mutation or another HR defi ciency 
benefi t more from PARPi than from maintenance 
therapy with bevacizumab. Therefore, genetic 
testing results are necessary for the treatment 
decision process. For this reason, every patient 
diagnosed with OC should be tested for BRCA1/2 
gene variants. The assessment should determine 
whether the abnormality is somatic or germline in 
origin. In the case of a typical BRCA1/2 sequence, 
a homologous recombination defi cit (HRD) status 
evaluation is required [18]. 

BRCA1 and BRCA2 genes

The BRCA genes belong to the class of tumour 
suppressor genes. Germline mutations in these 
genes signifi cantly increase the familial risk of 
developing breast and OC, known as hereditary 
breast and ovarian cancer syndrome (HBOC) 
[19]. A mutation in the BRCA1 gene increases the 
lifetime risk of developing OC to 39–58%, while 
a BRCA2 mutation raises this risk to 13–29% [20]. 
BRCA1/2 gene mutations are present in approx-
imately one-quarter of patients with OC [21]. 
Approximately three-quarters of these mutations 
are germline, while the remaining one-quarter are 
somatic [22]. 

In clinical practice, detecting a pathogenic 
BRCA gene variant enables the implementation 
of PARP inhibitor therapy [4,14]. Based on the 
results of the SOLO-1 trial, olaparib is indicated as 
a fi rst-line maintenance treatment in women with 
somatic or germline BRCA-mutated advanced 
OC after fi rst-line platinum-based chemotherapy 
[23]. The SOLO-2 trial demonstrated the benefi ts 
of olaparib for second-line maintenance treat-
ment in patients with germline BRCA mutations 
who had responded to platinum-based chemo-
therapy [24]. The PRIMA trial showed the ben-
efi t of niraparib across all patient populations, 
including those with HR profi ciency, though the 
effect was moderate in this group [25].

It is worth noting that mutations in other 
genes that interact with the BRCA genes may also 
be associated with an increased risk of ovarian 
cancer. BRIP1, also referred to as BACH1 (BRCA1-

Associated C-Terminal Helicase), was identifi ed 
during investigations of BRCA1 gene functions. 
The BRCT domain of BRIP1 is essential for its 
interaction with BRCA1, forming a protein com-
plex that facilitates the repair of double-strand-
ed DNA breaks through, among others, HR path-
ways. Mutations affecting the BRCT domains 
disrupt this interaction, thereby impairing DNA 
repair processes [26,27]. BRIP1 pathogenic vari-
ants have been related to hereditary breast and 
ovarian cancers that are independent of BRCA1/2 
mutations. Individuals carrying heterozygous 
deleterious variants in BRIP1 have an elevated 
risk of developing ovarian cancer [26]. The car-
riers have an estimated 5–15% lifetime risk, sig-
nifi cantly higher than the approximate 2% risk 
observed in the general population [28]. The 
PALB2 protein (Partner And Localizer of BRCA2) 
plays a crucial role in HR. Its primary function 
is to act as a molecular bridge linking the BRCA 
complex, comprising BRCA1, PALB2, BRCA2, and 
RAD51, and to support the activity of RAD51, a key 
protein involved in strand invasion during HR [29]. 
Women harbouring PALB2 mutations face a life-
time ovarian cancer risk of approximately 5% [30]. 
Given shared mechanisms, carriers of BRIP1 and 
PALB2 pathogenic variants should be included in 
BRCA1/2-based therapies and trials as they can 
potentially benefi t from them [31,32].

BRCA variants testing

The diagnosis of pathogenic variants in the 
BRCA genes can be performed using various 
techniques. Classical methods, such as Sanger 
sequencing or quantitative polymerase chain 
reaction (qPCR), are used as a fi rst step in popu-
lation-based screening or for confi rming variants 
identifi ed through next-generation sequencing 
(NGS) [33–36]. A key limitation of these tech-
niques is their ability to detect only selected 
pathogenic variants, typically those most com-
mon in a given population, including so-called 
founder mutations [36]. Hence, some less com-
mon but pathogenic variants remain undetect-
ed. A negative result from those methods should 
prompt further diagnostic evaluation using NGS. 
This approach allows the comprehensive analy-
sis of the entire coding sequence of the BRCA 
genes. This is particularly important given their 
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large size. Moreover, clinically signifi cant variants 
can be distributed throughout the whole coding 
region [36–38]. Another advantage of NGS is the 
possibility of analysing other genes associated 
with OC pathogenesis in panel sequencing that, 
in addition to BRCA1/2, may include RAD51C/D, 
BRIP, and PALB2 [39,40]. Multiplex ligation-de-
pendent probe amplifi cation (MLPA) is typically 
employed to detect large chromosomal rear-
rangements in BRCA genes [41].

The clinical relevance of specifi c BRCA gene 
variants is classifi ed. These include pathogenic 
or likely pathogenic variants (BRCAmut) and the 
absence of such variants, referred to as wild type 
(BRCAwt) [26]. Further diagnostic steps determine 
whether the mutation is somatic (sBRCAmut) or 
germline (gBRCAmut) [27]. Tumour-only testing 
(tBRCAmut) [28] cannot determine the somatic or 
germline nature of the mutation. Molecular test-
ing of the host genome, typically from peripheral 
blood, is required to identify the germline nature 
of the variant. According to The American College 
of Medical Genetics and Genomics and the Asso-
ciation for Molecular Pathology (ACMG/AMP) 
guidelines, variants are classifi ed using a fi ve-tier 
scale as benign (B, class 1), likely benign (LB, 
class 2), variant of unknown signifi cance (VUS, 
class 3), likely pathogenic (LP, class 4), and 
pathogenic (P, class 5) [29]. Pathogenic variants 
(PVs) in the BRCA1 and BRCA2 genes are detected 
in 10–15% of unselected epithelial OC cases [42]. 
Patients with likely pathogenic and pathogen-
ic variants are eligible for treatment with PARP 
inhibitors [30]. It should be noted, however, that 
specifi c variants of unknown signifi cance may be 
considered pathogenic in the future as the num-
ber of patients with such a variant grows. There-
fore, those patients and their families may require 
increased monitoring, especially if other cases 
appear to suggest a hereditary syndrome. 

Homologous recombination 
defi cit

From a practical perspective, detecting HRD 
allows qualifying patients for PARPi therapy 
[14,15]. Based on the results of the PRIMA trial, 
niraparib can be used as maintenance therapy for 
all patients, including those with HRD and HRP 
tumours [25]. The PAOLA-1 trial demonstrated 

the effi cacy of olaparib in combination with bev-
acizumab compared to bevacizumab monother-
apy. Based on the results of this study, the drug 
combination has been approved for HRD-positive 
patients who respond to fi rst-line platinum-based 
chemotherapy [43].

The detection of recombination defects 
remains a signifi cant challenge. Identifi cation of 
patients, beyond carriers of BRCA1/2 gene muta-
tions, who may benefi t from maintenance thera-
py remains ineffective [44]. HRD test results are 
often inconclusive due to differences between 
available tests and the lack of standardised cri-
teria for defi ning HRD [18]. Studies involving nira-
parib, olaparib, and veliparib utilised the myChoice 
test developed by Myriad Genetic Laborato-
ries [45–47]. This test detects mutations in the 
BRCA1/2 genes. It determines the Genomic Insta-
bility Score (GIS), which is based on the extent of 
loss of heterozygosity, the number of subchro-
mosomal regions with allele imbalance extending 
to the telomere, and the number of large-scale 
genomic rearrangements. [44]. Different clini-
cal trials have applied varying threshold values 
for the GIS determined by the myChoice test to 
defi ne the presence of homologous recombina-
tion defi ciency (42 in the PAOLA-1 trial and 33 
in the VELIA trial), highlighting the lack of clar-
ity in patient stratifi cation based on this metric 
[45,47]. Another test, FoundationFocus CDxBRCA 
by Foundation Medicine, is based on the assess-
ment of subchromosomal loss of heterozygos-
ity and the detection of BRCA1/2 mutations in 
tumour tissue [44] and was utilised in the clini-
cal trial evaluating the effi cacy of rucaparib [48]. 
In contrast, the PRIME clinical trial of niraparib 
employed the BGI Genomics test [49]. There are 
substantial differences among these assays, and 
their negative predictive value remains low [44]. 
Consequently, accurately identifying patients 
who will not respond to treatment remains chal-
lenging.

The currently used methods rely on so-called 
genomic "scars" (indicators of genomic instabili-
ty), which are static and may not accurately reflect 
the current status of DNA repair in the tumour. 
These genetic features may change throughout 
the disease and in response to applied treatments 
[50]. Tests may yield false-positive or false-neg-
ative results (estimated in 10–15% of cases). 
Moreover, the heterogeneity within tumour cells 
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can lead to different classifi cations of the same 
tumour depending on the biopsy site [51].

HRD testing should be performed as early as 
possible following the diagnosis of OC, ideally at 
the time of primary diagnosis. A stepwise diag-
nostic approach is also acceptable if molecular 
testing of the BRCA genes is conducted fi rst. If the 
tumour is BRCA wild type (BRCAwt), HRD testing 
is subsequently performed. Economic consider-
ations primarily justify this approach. However, 
current reports on cost-effectiveness are incon-
sistent [52–54].

HRD testing methods

The currently used tests for HRD status assess-
ment can be categorised into three main groups – 
assessing mutations in genes in HRR pathways, 
genomic instability, or HRR functional status by 
nuclear RAD51 tests [18,55–57].

The fi rst group is based on the detection of 
typical causes of HRD. They assess the loss of 
function of germline and somatic mutations in 
the HRR pathway genes, including BRCA1/2 [18] 
and BRCA1 promoter methylation [57]. However, 
it is worth noting that the lack of mutations in 
those genes should not be considered equivalent 
to HRP status.

The second group determines the HRD by cal-
culating the genomic instability (GI) score [58]. 
It is calculated as the sum of events collectively 
referred to as “genomic scars”. These are loss 
of heterozygosity (LOH), large-scale state tran-
sition (LST), and telomere allele imbalance (TAI) 
[18,55,58]. These disorders reflect the abnormali-
ties occurring in HRD cells.

LOH is a frequent genetic condition in cancer 
cells [59]. It occurs when a heterozygous genetic 
locus loses one of its parental alleles, resulting in 
homozygosity. The remaining allele's dysfunction 
can lead to a neoplastic transformation. LOH can 
be categorised into two primary types: LOH with 
copy number loss (CNL-LOH) and copy number 
neutral LOH (CNN-LOH). During cancer progres-
sion, tumour cells may experience the loss of an 
allele due to partial chromosomal deletion, which 
characterises CNL-LOH. Subsequently, CNL-LOH 
may undergo recombination, utilising the homolo-
gous chromosome as a template for repair, leading 
to copy number neutral LOH (CNN-LOH) [18,59,60]. 

Large-scale transitions (LST) refer to sig-
nifi cant chromosomal modifi cations, including 
translocations, inversions, and deletions result-
ing from chromosomal breakage events. These 
alterations involve chromosomal gains or losses 
of at least 10 megabases (Mb) in size [61,62]. 

In cells with profi cient DNA repair mecha-
nisms, double-strand breaks are accurately 
repaired through homologous recombination, 
using the identical sister chromatid as a template, 
thereby preventing telomeric allelic imbalance 
(TAI). However, error-prone pathways are util-
ised when DNA repair is impaired in HRD, result-
ing in chromosomal rearrangements and abnor-
mal radial chromosome formations. After mitotic 
division, this defective repair leads to TAI, char-
acterised by an unequal contribution of parental 
telomeric chromosome segments in the daughter 
cells [63].

The third group of tests assesses the HRR 
status by nuclear RAD51 functional tests [55,18]. 
The RAD51 family comprises fi ve paralogous 
proteins (RAD51B, RAD51C, RAD51D, XRCC2, and 
XRCC3) that mediate DNA damage signalling to 
facilitate break repair. RAD51 is the key protein 
in homologous recombination, playing a crucial 
role in cellular damage sensing and checkpoint 
signalling pathways [64,65]. Consequently, cell 
phenotypes resembling those of BRCA-mutated 
cells can also result from other, less common 
alterations, such as mutations in PALB2, RAD51C, 
and RAD51D or the epigenetic silencing of HR 
genes [66]. When homologous recombination 
repair functions correctly, RAD51 assembles into 
nuclear foci, indicating HRR profi ciency (HRP). 
Conversely, the absence of nuclear foci signifi es 
HRR defi ciency [64].

Numerous commercial tests are available to 
assess HRD in OC patients. MyChoice® CDx Plus 
and FoundationOne® CDx were the fi rst tests 
approved by the FDA for this purpose. MyChoice® 
CDx Plus is based on sequencing 15 HRR genes 
and a genome-wide single-nucleotide polymor-
phism-based assay (GW-SNP). HRD is determined 
based on a BRCAmut result or a genome instabili-
ty score (GIS) ≥ 42. GIS is evaluated as a combined 
score of LOH, TAI, and LST [67]. FoundationOne® 
CDx analyses 324 genes using next-generation 
sequencing (NGS) and a genome-wide single-nu-
cleotide polymorphism-based assay (GW-SNP). 
HRD is defi ned by the presence of a BRCAmut 
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variant or a genome-wide loss of heterozygosity 
(gLOH) score of ≥ 16% [67,68].

Several other commercially available tests are 
designed to assess homologous recombination 
defi ciency (HRD). OncoDEEP® utilises next-gen-
eration sequencing (NGS) to assess 638 genes 
and an RNA-based 20-gene panel for detecting 
gene fusions and splicing events. The test eval-
uates BRCA status and determines the genome 
instability score (GIS) based on a developed algo-
rithm [67,69]. SeqONE HRD utilises NGS and shal-
low whole genome sequencing (sWGS) to assess 
BRCA and HRD status, which is based on a com-
posite score of LOH and LGA (large genomic 
alterations) and genes CCNE1 and RAD51B ampli-
fi cation at two specifi c locations [67,70]. SOPHiA 
DDM™ Dx HRD CE-IVD performs next-genera-
tion sequencing (NGS) analysis of 324 selected 
genes and shallow whole-genome sequencing 
(sWGS). HRD assessment is conducted based on 
a proprietary algorithm [67,71]. HRD Focus util-
ises next-generation sequencing (NGS) to detect 
BRCA gene mutations and assess genomic insta-
bility using a genome-wide single-nucleotide 
polymorphism-based assay (GW-SNP). HRD is 
defi ned by the presence of BRCAmut or a genome 
scar score (GSS) ≥ 50 [67,72]. Caris HRD Sta-
tus determines the presence of BRCA mutations 
and assesses a GSS based on gLOH and LST 
[67]. The AmoyDx® HRD Complete Panel detects 
genetic alterations in 20 HRR genes and deter-
mines overall HRD status. Its proprietary GIS 
algorithm, based on machine learning, evaluates 

genomic instability by analysing multiple types of 
copy number variations across the genome [73]. 
In addition to the tests described above, several 
established assays are currently used for aca-
demic purposes. These include the Geneva HRD 
Test, NOGGO GIS Assay, GIScar, Leuven HRD test, 
Shallow HRDv2, and BRCA-Like Classifi er [67].

Molecular subtypes of ovarian 
cancer according to TCGA 
analysis – potential expansion 
of genetic diagnostics

The TCGA (The Cancer Genome Atlas) database 
and its analysis have signifi cantly benefi ted gyne-
cologic oncology by identifying molecular sub-
types of endometrial cancer, which now directly 
influence clinical decision-making [74,75]. Given 
these advancements, it is no surprise that gyne-
cologic oncologists are increasingly interested in 
further utilising the resources of this database. 
Based on the analysis of data from TCGA, four 
molecular subtypes of OC have been identifi ed: 
mesenchymal, proliferative, immunoreactive, and 
differentiated [4]. The mesenchymal subtype is 
characterised by high expression of HOX genes 
(a group of genes responsible for the morpho-
logical development of specifi c body parts during 
early embryonic stages) and markers suggest-
ing increased stromal components (such as FAP, 
ANGPTL2, and ANGPTL1 genes). The proliferative 

Table 1 – Summary of commercial and academic tests for assessing HRD based on "Homologous recombination defi ciency in ovar-
ian cancer: Global expert consensus on testing and a comparison of companion diagnostics" [67].

Tests for assessing HRD
Approved Commercial Tests HRD defi nition Academic Tests HRD defi nition

MyChoice® CDx Plus BRCAm and/or GIS ≥42 Geneva HRD Test GIS ≥15
OncoDEEP® GIS >39 NOGGO GIS Assay NOGGO GIS ≥83
SeqONE HRD BRCAm and/or HRD status (probability ≥50%; 

based on composite score and gene 
amplifi cation at two locations)

GIScar GIScar score ≥0.48

SOPHiA DDM™ Dx HRD CE-IVD GII >0 Leuven HRD test BRCAm and/or GIS ≥56
FoundationOne® CDx BRCAm and/or gLOH score ≥16% Shallow HRDv2 >20 LGAs

HRD Focus BRCAm and/or a GSS ≥50 BRCA-Like 
Classifi er

Posterior probability 
>0.5

Caris HRD Status BRCAm or high GSS

BRCAm, BRCA mutation; CDx, companion diagnostic; GI, genome instability; GII, genome instability index; GIS, genome instability score; 
gLOH, genomic loss of heterozygosity; GSS, genome scar score; HRD, homologous recombination defi ciency; HRR, homologous recombina-
tion repair; indel, insertion or deletion; LGA, large genomic alterations



Journal of Medical Science 2025 June;94(2) 119

subtype exhibits high expression of transcription 
factors such as HMGA2 and SOX11 and prolifer-
ation markers like MCM2 and PCNA. However, it 
shows low expression of OC markers, including 
MUC1 and MUC16. 

Additionally, this subtype is associated with 
a reduced frequency of MYC amplifi cation and 
RB1 deletion. The presence of T-cell ligands 
CXCL11 and CXCL10, along with their receptor 
CXCR3, defi nes the immunoreactive subtype. 
Moreover, 3q26.2 amplifi cation (MECOM) occurs 
more frequently in this subtype. The differenti-
ated subtype is characterised by higher differen-
tiation features, including increased expression 
of MUC1, MUC16, and the secretory fallopian tube 
marker SLPI [4]. 

The current standard of care does not use 
information on molecular subtypes of OC defi ned 
in the TCGA project. It has been demonstrated 
that patients with mesenchymal and prolifera-
tive subtypes derive more signifi cant benefi ts 
from bevacizumab treatment [76–78]. Further-
more, the mesenchymal subtype is more respon-
sive to dose-dense taxane chemotherapy, which 
suggests that the preferred treatment regimen 
should be dose-dense paclitaxel with carbo-
platin (ddTC) [79,80]. The possibility of routine 
molecular subtype profi ling could be helpful in 
clinical decision-making. The main obstacles 
include costs and technical challenges, particu-
larly those related to standardising the method-
ology [79,81]. Conducting specialised tests, such 
as using microarrays solely for this purpose, may 
be challenging [82]. Attempts have been made 
to histopathologically profi le ovarian tumours 
based on their molecular subtypes, which could 
facilitate access to knowledge about specifi c 
tumour biology [80]. 

Artifi cial intelligence in molecular profi ling 
of ovarian cancer
Artifi cial intelligence (AI), particularly machine 
learning, is increasingly utilised in medicine to 
support diagnostics and treatment planning. 
Learning algorithms can identify patterns that 
may be imperceptible to human experts. These 
techniques are applied in areas such as radio-
logical image analysis, disease progression pre-
diction, and personalised therapy [83,84]. Several 
studies have integrated genomics, epigenomics, 
transcriptomics, and clinical or pathological data 

to enhance the diagnosis, prognosis, and predic-
tion of treatment response in OC. Approaches 
using machine learning and deep learning dem-
onstrated that multiomics models outperform 
single-omics models in tasks such as survival 
prediction, subtype classifi cation, and response 
to therapy [85,86]. AI techniques have the poten-
tial to effectively surpass classical methods of 
identifying patients with HRD.

An example of this is DeepHRD, a platform 
trained to predict HRD from hematoxylin and 
eosin (H&E)–stained histopathological slides. 
Compared to four standard molecular tests, 
this model identifi ed more tumours exhibiting 
HRD-related features [87]. AI utilises the analy-
sis of histopathological images obtained through 
Whole Slide Imaging (WSI), which involves scan-
ning and digitising entire histology slides [88–90]. 
Algorithms identify morphological patterns asso-
ciated with HRD, such as hemorrhagic necrosis at 
tumour margins, lymphocytic infi ltration, fi brosis, 
and high tumour cell density [89]. There are also 
ongoing efforts to apply machine learning and 
neural networks for classifying ovarian cancers 
into distinct subgroups and for analysing data 
derived from single-cell image analysis [91–93]. 
It is essential to emphasise the critical role of 
building large-scale databases that include mac-
roscopic and microscopic images and omics 
data, such as TCGA.

Conclusions

Molecular diagnostics are now essential for plan-
ning the treatment of patients diagnosed with OC. 
Molecular profi ling is crucial for implementing 
maintenance therapy as part of fi rst-line treat-
ment. BRCA and HRD testing are fundamen-
tal in guiding treatment decisions, particularly 
in selecting patients for PARP inhibitor therapy. 
BRCA1 and BRCA2 mutations and homologous 
recombination defi ciency (HRD) are key predic-
tive biomarkers that determine responsiveness to 
targeted therapies. 

Focusing on alternative molecular pathways 
is equally essential as targeting BRCA muta-
tions and HRD-related alterations in OC. This is 
particularly relevant for patients who are resis-
tant to PARP inhibitors or do not meet the crite-
ria for this treatment. Additionally, research into 
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OC subtypes other than HGSOC is crucial, as 
BRCA mutations and HRD are less prevalent in 
these tumours. Targeted therapies tailored to the 
unique molecular characteristics of non-HGSOC 
remain underdeveloped, highlighting the need for 
further studies. AI models play an increasingly 
important role in the diagnosis, prognosis, and 
personalisation of OC treatment, particularly by 
integrating omics, imaging, and clinical data.
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