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ABSTRACT

Inductively coupled plasma mass spectrometry ICP-MS is a versatile analytical tool with several research 
uses and regular applications in many domains, including biological materials, environmental analysis, and 
geochemistry. This technique detects trace components in water, soil and clay, blood, urine, pharmaceutical 
products, and medicinal cases. Although other methods, such as atomic absorption and atomic emission, 
are still used by researchers, there has been a noticeable shift toward ICP-MS, notably over the last dec-
ade. Developing accurate and precise methods for measuring components at low concentrations is crucial 
for detecting abnormalities in the human body and detecting trace amounts of metal in many other species. 
ICP-MS is a viable approach for the elemental determination of biological fluids, water, clay, and pharmaceu-
ticals because it allows for reliable analysis at trace and ultra-trace levels while maintaining a wide dynamic 
range. Many breakthroughs have been made in ICP-MS analytical capabilities over the last few years. This 
review discusses the most recent works that use trace element analysis by ICP-MS in several fi elds.

Introduction

Measuring trace elements in biological and 
other samples has numerous clinical applica-
tions. The rise in xenobiotics in the environment 
directly results from technological advance-
ment. Biomonitoring is an essential tool for esti-
mating human exposure to pollutants, and their 
concentrations in the blood are commonly uti-
lised as biomarkers [1]. This highlights the need 
for faster and more sensitive procedures requir-
ing less sample handling. Thus, traditional tech-

niques like atomic absorption or electrochemical 
approaches are gradually replaced by multi-ele-
ment techniques with suitable sensitivity, such as 
ICP-MS [2]. These methods may be able to detect 
components at trace quantities with the neces-
sary sensitivity, but they lack speed and usability. 
Because of the high sensitivity and low detection 
limits of ICP-MS, toxicologists can accurately 
assess ambient metal exposure and toxic levels, 
making it a valuable tool for various clinical appli-
cations [3]. Additionally, this approach opens up 
new opportunities in several disciplines, includ-
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ing environmental exposure, workplace testing, 
clinical toxicology, and forensic toxicology. It is 
also suitable for epidemiological investigations 
and detecting many elements in urine, pharma-
ceuticals, water, and clay samples [4–8]. 

Mass spectrometry's sensitivity and selec-
tivity make it ideal for monitoring tiny concen-
trations of components in biological materials 
[9]. These low-abundance substances often play 
essential roles in their corresponding chemical or 
biological systems [10]. This review aims to pres-
ent the most recent research and some notewor-
thy older works, applying trace element analysis 
by ICP-MS in several fi elds to understand clinical 
and environmental conditions better.

ICP-MS Instrument 

A single quadrupole ICP-MS comprises six basic 
compartments: the sample introduction sys-
tem, inductively coupled plasma (ICP), interface, 
ion optics, mass analyser and detector [11]. Ions 
with varying mass-to-charge ratios are separated 
in MS using the basic characteristics of electric, 
magnetic, and radio frequency fi elds. In the case 
of ICP-MS, the inductively coupled high-frequency 
plasma serves as the ion source, where the ions to 
be separated are produced. A sample introduction 
system that transforms the sample into a physical 
condition most suited to the ion source's opera-
tion. Pneumatic nebulisation of a liquid sample is 
the most common method used for sample intro-
duction in ICP-MS. The plasma ion source uses 
external energy from a high-frequency electro-
magnetic fi eld coupled inductively to create ions 

from atoms. The aerosol is dried, broken down, 
dissociated, atomised, stimulated, and positively 
ionised in the plasma source. The interface sys-
tem removes the ions from the plasma and com-
prises a vacuum fore pump, a sample cone, and 
a skimming cone. This apparatus is also required 
to lower the ion source's pressure to the neces-
sary vacuum in the mass analyser area. The ions 
are focused into the mass analyser using a lens 
mechanism. The ions are separated based on their 
mass-to-charge ratio in the mass analyser (qua-
drupole [ICP-QMS], magnetic sector fi eld [ICP-SF-
MS], and time of flight analyser [ICP-TOFMS]).

A device known as a Faraday cup or second-
ary electron multiplier is also used to detect the 
ions. Lastly, the computer that manages every 
aspect of the mass spectrometer gathers infor-
mation and outputs the mass spectrum, showing 
the ions' mass-to-charge ratios and their mea-
sured intensities. ICP-MS is a method commonly 
used for liquid analysis. To generate an aerosol 
from a solid or particle sample, it must be trans-
formed into a solution using a pneumatic nebu-
liser. Aerosol is continually carried to the plasma 
ion source, which operates at atmospheric pres-
sure, via a transport gas (often Argon) and tub-
ing [12,13]. Figure 1 is a schematic of an ICP-MS 
machine [14]. The advancements in ICP-MS tech-
nology have enabled the detection of challenging 
analytes at trace and ultra-trace levels in many 
samples. For example, comparing the technique 
with atomic absorption techniques shows that 
ICP-MS has incredible speed, precision, and sen-
sitivity. The limitations of the technique include 
the equipment's relatively high cost and a group 
of elements that cannot be detected [15].

Figure 1. Cross-section schematic of an ICP-MS (ref. 14).
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Determination of elements 
in blood samples

The focus on trace element content in biological 
fluids has led to the development of analytical 
techniques specifi cally for this purpose. The low 
quantities of specifi c components in human flu-
ids, combined with the complexity of the matrix, 
challenge analytical methods [14]. 

The various biological functions that trace ele-
ments play in human health indicate their signifi -
cance in clinical research, diagnosis of defi ciency 
disorder, or prevention of unintended exposure 
to toxic metals. It is crucial to examine the trace 
element profi le and functional elemental bio-
markers in biological fluids to learn more about 
an individual's nutritional status, the diagnosis 
and treatment of diseases, and the relationship 
between these conditions and other contribut-
ing factors [16,17]. Based on their chemical char-
acteristics and binding affi nities, trace elements 
in blood are dispersed between the extracellular 
compartment (blood plasma) and the intracel-
lular compartment (mostly in erythrocytes) [18]. 
ICP-MS was the most effective and frequently 
used analytical technique for measuring numer-
ous trace elements in biological fluids such as 
blood and plasma [19]. 

ICP-MS was used in microsampling, which 
became more popular in recent decades, and 
it is used for standard analyses such as trace 
element quantifi cation. Researchers compared 
dried blood spots and microtubes to assess their 
capacity for analysing 12 trace components in 
human whole blood [20]. The technique detect-
ed trace elements (K, Zn, Se, Cu, Mn, Fe, Mg) in 
serum and whole blood. The suggested method-
ology was validated by analysing certifi ed human 
serum and whole blood with known amounts of 
all elements. The method is suitable for routine 
usage in biomonitoring investigations [21]. An 
enhanced micro-sampling ICP-MS technique 
was developed in another study to measure the 
concentrations of Ca, Mg, Cu, Zn, Fe, Mn, Se, and 
Pb in uremic patients receiving long-term hemo-
dialysis [22].

On the other hand, the technique was used 
to investigate baseline blood levels of 12 tox-
ic and/or essential metals and metalloids in 
Wuhan, central China, including As, Cd, Pb, Hg, 
Cr, Tl, Mn, Cu, Zn, Ca, Fe, and Mg [23]. Research-

ers developed a method to measure the content 
and size of silver nanoparticles in blood for use in 
in vivo toxicological assessments. The approach 
can be applied to characterise AgNPs in toxic-
ity research [24]. Cu content in human red blood 
cells was studied using time-resolved ICP-MS. 
Human red blood cells (1.5 × 105 /mL) were trans-
formed into fi ne aerosols using a modifi ed nebu-
liser and spray chamber for effi cient single-cell 
insertion into the ICP [25]. A new high-precision 
and high-throughput technique for directly iden-
tifying major and trace elements in whole blood 
samples was developed, and it was based on the 
laser ablation ICP-MS equipment. This technique 
signifi cantly increased precision by using a spe-
cially made cryogenic ablation cell to prevent 
droplet splashes during the ablation procedure 
by solidifying liquid whole blood samples [26]. 
The effects of storage temperature and stability 
of various clinical trace elements in human blood 
and plasma were investigated over an extended 
storage period. It was found that human blood 
and plasma specimens could be stored for up to 
six months at low temperatures (4 °C and -20 °C) 
without experiencing signifi cant changes in ele-
mental content [27]. 

Urine Elemental Analysis

Urine is a mixture of waste metabolites that are 
soluble in water and is produced when the kid-
neys fi lter blood at a consistent rate. Urine anal-
ysis is well-established and has been used to 
analyse exposure to harmful elements or chemi-
cals, fi nd irregularities in absorption, or study 
diseases to determine causes and enhance 
prognosis [28,29]. Urine analyses are less com-
plicated than blood or faeces because sample 
pre-treatment is made easier by the compara-
tively low concentrations of organic and inorgan-
ic solutes. Additionally, collecting urine samples 
is a simple and non-invasive procedure that may 
be completed without the help of qualifi ed medi-
cal professionals [30].

Numerous studies have shown that ICP-MS 
is the most effective method for identifying ele-
ments in urine. An analysis method for the detec-
tion of six arsenic compounds, trivalent arsenic, 
pentavalent arsenic, methyl arsenic, dimethyl 
arsenic, arsenical choline and arsenical betaine 
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in urine was established by high-performance 
liquid chromatography combined with ICP-MS to 
provide a theoretical basis for health assessment 
of arsenic poisoning patients [31]. ICP-MS was 
used to assay elements in the urine alternation 
and correlation of Mg, Ca, Cu, Zn, Fe, Cr, and Se 
among diabetic peripheral neuropathy patients 
and healthy people using multivariate statisti-
cal analysis [32]. Chelation therapy was tried for 
a patient whose symptoms were thought to be 
consistent with Chronic Fatigue Syndrome, sug-
gesting that the patient may have been intoxi-
cated with metals. Simultaneously, the elemen-
tal excretion profi le in urine was established. 
Most toxic elements showed an excretion peak in 
12–24 hours after EDTA treatment [33]. An inves-
tigation was carried out to examine the impact 
of physical exercise on the concentrations of 
Cu in both intracellular (erythrocytes and plate-
lets) and extracellular (serum, plasma, and urine) 
using ICP-MS [34]. A 14-day excretion study with 
20 volunteers involved daily applications of 1 mg 
of CoCl2 or 1 mg of cyanocobalamin. The sam-
ples were obtained from 7 days before treatment 
to 7 days after. Total Co concentrations found by 
ICP-MS indicated considerably increased values 
exclusively after inorganic cobalt consumption 
[35]. Fifteen metals and metalloids (As, Be, Bi, Cd, 
Co, Cr, In, Mn, Mo, Ni, Pb, Sn, Tl, V, and Zn) were 
determined using ICP-MS spectrometry. All ele-
ments were detected in urine samples above the 
limit of quantifi cation in ng/L ranges, except indi-
um [36]. An experiment was done using ICP-MS 
to see if acid-washed containers were required 
for the 24-hour urine copper analysis. Assay 
diluent and unidentifi ed urine samples were 
spiked with the copper calibrator to produce cop-
per solutions at concentrations relevant to clini-
cal decision limits. It was found that measuring 
the amount of copper in 24-hour urine does not 
require acid-washed containers [37]. 

Medicinal applications

In living organisms, numerous metal ions have 
structural and catalytic activities in proteins and 
enzymes, and they contribute to several physio-
logical processes, such as antioxidation, metabo-
lism, signalling, and gene expression [38]. Approx-
imately ten elements are required for life: Na, K, 

Mg, Ca, Mn, Fe, Co, Zn, Ni, Cu, and Mo. Biologically 
necessary metals are classifi ed into two types: 
non-transition elements (Na, K, Mg, and Ca) and 
transition elements (Fe, Co, and Cu) [39]. Ions like 
divalent Ca2+, which are found in relatively high 
concentrations, are among the necessary metal 
ions: Ca2+ is a required component of bones and 
teeth and accounts for 1% to 2% of the human body 
weight [40]. Mg2+ is also an essential element in 
rather substantial amounts in the human body and 
constitutes about 0.05% of body weight [41]. Metal 
ions frequently act as cofactors for enzymes and 
are required for their proper function, permitting 
catalytic activity. Metal ions are also responsible 
for the structural stability of proteins and for con-
trolling various biological events. A metal binding 
site's shape may be distorted by the binding of 
a non-specifi c metal ion or an ion lacking a spe-
cifi c binding capacity, which could reduce the 
activity of the corresponding metalloprotein [42]. 
Because of their increased quantities as a direct 
result of human activity, the requirement to iden-
tify the species (oxidation state/chemical form) 
of elements present in the environment and bio-
logical matrices has excellent importance [43]. It 
was found that the search for a superior proteom-
ics quantifi cation method has essentially been 
resolved with the aid of ICP-MS [44]. 

ICP-MS analysis of a single cell has signifi -
cant promise for evaluating components within 
cells [45]. In cells, trace elements are essential. 
It was found that ICP-MS is crucial for examin-
ing trace elements and their species in cells and 
that it can help with both clinical and biological 
research [46]. The technique was used to map 
elements in mouse brain tissue [47]. Results of 
a study on the impact of oral deferiprone treat-
ment on Cd accumulation and the homeostasis 
of vital components in the brains of mice exposed 
to Cd were presented. The results showed that, in 
comparison to untreated controls, mice exposed 
to Cd for 14 days had considerably higher Cd 
concentrations and signifi cantly lower brain lev-
els of Mg, P, and Zn [48]. A sensitive and specifi c 
assay has been developed to detect platinum in 
biofluids. This technique allowed for the charac-
terisation of patients' long-term platinum expo-
sure after receiving oxaliplatin treatment [49]. 
Sector-fi eld ICP-MS is a versatile tool for quan-
tifying target elements, such as iron and sulfur, 
in bio-nano systems. When combined with ultra-
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fi ltration, it creates an adaptable screening plat-
form for assessing the pharmacological proper-
ties of engineered iron oxide nanoparticles [50]. 

Elemental analysis of 
pharmaceutical products

Substances in pharmaceuticals, excipients, and 
drug formulations are known as elemental impu-
rities. They can originate from any raw compo-
nents used in the drug product [51]. Controlling 
pharmaceutical products is vital to maintaining 
the high quality of pharmaceutical manufactur-
ing. Offi cial pharmacopoeias and authorised 
supervising bodies have called for more thorough 
and accurate quantitative screening of specifi c 
elemental impurities in medications since some 
may be seriously harmful to human health [52]. 

ICP-MS was utilised to identify plant-de-
rived therapeutic compounds, with Cu being the 
most prevalent [53]. The technique was used to 
determine the factors influencing titanium diox-
ide nanoparticle size in cosmetic samples [54]. 
A study shows how effective high-resolution 
ICP-MS is for qualifying nanoparticles. It showed 
that crucial requirements for biomedical applica-
tions, like resistance to the action of the human 
serum milieu or reactivity toward serum biomol-
ecules, can be accurately evaluated by recording 
the signals of gold or sulfur isotopes using novel 
gold nanoparticles stabilised by N-heterocyclic 
carbenes as test nanoparticles [55]. To investi-
gate the toxicity levels of 22 nasal spray saline 
samples, Al, Sb, As, B, Cd, Cr, Co, Cu, Fe, Mn, Ni, Si, 
and Zn were analysed using ICP-MS [56]. It was 
also used to assess the concentration of metals 
(Ag, Ba, Bi, Cd, Pb, Sr, Tl) in 94 eye shadow sam-
ples from the Polish market [57]. It was also used 
to distinguish between ultra-trace quantities of 
transition metals (Co, Cr, Cu, Fe, and Ni) that inter-
act with therapeutic proteins and free metal in 
solution in the drug formulation [58]. It was also 
used to determine Ag and Zn in microcapsules, as 
they are mighty antibacterial metals [59], and to 
assess 18 plasticiser residues (phthalates, adi-
pates, sebacates, and others) in sixteen drugs that 
are sold in Tunisian pharmaceutical markets [60]. 
ICP-MS, with other techniques, was used to anal-
yse a poison vial found in the remains of a soldier 
who died in 1944 in Normandy, France [61].

Assessing elements in water

Pure drinking water is crucial to survival and 
essential for optimal nutrition. Different natu-
ral and artifi cial processes pollute many water 
sources worldwide, causing various health issues 
for humans [62]. Water quality is deteriorating 
due to the ongoing addition of harmful chemi-
cals and bacteria and the constant addition of 
domestic and industrial sewage sludge, garbage, 
and other hazardous waste that is damaging to 
humans and the environment [63]. Spectroscopic 
methods such as ICP-MS enabled the determina-
tion of the total metals and metalloid content in 
the water at low concentration levels [64].

Single particle ICP-MS was used to examine 
the presence of Ti- and Pb-based particle nano-
materials in the aquatic environment in 63 loca-
tions in the Melbourne area of Australia [65]. It 
was also used to evaluate a variety of elements in 
water, such as Ra-226 [66], Cr(III) [67], and F, by 
measuring BaF+ ions [68]. A technique for deter-
mining the total concentrations of the rare earth 
elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 
Er, Tm, Yb, and Lu in mineral water was devel-
oped and validated [69]. Another ICP-MS study 
examined the environmental geochemical prop-
erties of rare-earth elements in surface waters 
in the Anhui Province, China's Huainan mining 
area [70]. ICP-MS was used to compare water 
lead measurements made by two fi eld analysers 
using anodic stripping voltammetry and fl uores-
cence spectroscopy to reference laboratory mea-
surements [70]. The technique was employed in 
a study on exposure to the high fl uoride concen-
tration in spring water in the Bazman volcanic Area 
in southeast Iran [72]. A cathodic stripping voltam-
metry electroanalytical technique on a miniature 
platinum working electrode was used to develop 
a new set of miniature sensors for Mn determina-
tion [73]. Combined with cobalt ions, the method 
enhanced photochemical vapour production and 
highly sensitive analysis of trace antimony in water 
samples [74]. 

Clays and soil analysis 

Since human activity and industrial development 
are expanding at alarming rates, scientists are 
focusing on the issue of detecting these pollut-
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ants in the environment. ICP-MS has proven suf-
fi cient for this area's analysis [75]. On the other 
hand, the technique is widely used for analysing 
several elements in geological samples for trace 
element levels [76]. The study of the provenance 
of archaeological pottery has extensively used 
elemental chemical analysis in archaeome-
try. The method involves determining the high-
est number of major, minor, and trace elements 
in ceramics and comparing them to known or 
assumed origins [77]. 

ICP-MS was used to determine sediment 
samples from the Itapicuru-Mirim River in Jaco-
bina, Bahia, Brazil, for As, Cd, Cr, Cu, Fe, Hg, Mn, 
Ni, Pb, and Zn concentrations [78]. Three Lem-
nian and three Silesian medicinal earths from the 
University of Basel's Pharmacy Museum were 
examined for antibacterial activity using [79]. The 
technique was used to study the in vitro release of 
aluminium from the geophagic clay Chacco in the 
Peruvian highlands [80]. In a study comparing the 
multi-element composition of forest trees to soil 
chemical and physical properties, 46 elements 
were measured [81]. A study examined the distri-
bution of Li during the evaporation of brine ponds 
that produce halite and gathered the fi rst data on 
the amount of Li in the salt plugs in southern Iran 
[82]. Another study examined metal(loid) pres-
ence and size-dependent variations in concen-
tration in recent marine sediments from coastal 
and open-sea habitats in the eastern Adriatic 
[83]. Single particle-ICP-MS was used to analyse 
the size distribution of copper oxide nanopar-
ticles in aqueous test soil extracts [84]. ICP-MS 
and other techniques were used to identify the 
mineral compositions of 28 soil samples col-
lected from various places in the Disi area (South 
East Jordan) [85]. The technique was combined 
with Laser ablation to study the clay fraction of 
archaeological pottery [86]. The particle size dis-
tribution of colloids containing Cr(III) and Cr(III) 
species in mobile colloids was determined using 
the technique [87].

Conclusions

Even while researchers continue to use oth-
er methods, including atomic absorption and 
atomic emission, to detect metals in various 
species, there has been a discernible movement 

toward ICP-MS, particularly over the last decade. 
Because it enables dependable analysis at trace 
and ultra-trace levels while preserving a broad 
dynamic range, ICP-MS has proven to be a prac-
tical method for elemental measurement of bio-
logical fluids, water, soil, and clay, as well as 
pharmaceuticals. In this review, we demonstrat-
ed that the capabilities of the ICP-MS analytical 
technique have witnessed various developments.
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